

2003-12-03 Montréal

PRESENTATION OUTLINE

Heavy trucks

Truck factor =

Axle weight
Reference axle w.

■ 2x weight = 16x damages

AASHTO:

■ 1 ESAL = 1 single axle of $8 \cdot 165 \text{ kg}$

= 1 tandem axle of 15 200 kg

= 1 tridem axle of 21 800 kg

Trafic evaluation

- 3,500 counting and classification stations
- 10 Weigh-In-Motion (WIM) scales
- ESALS calculated with ASTM E1318

Load Equivalency Factor : △ LEF = F(△ weight)

Heavy Trafic during the spring period

- ESAL per day ≈ 60% of summer
 - Average truck ≈ LEF 20% smaller (SLR of 15%)
 - Shipments needs about ≈ 20% less than normal period
- SLR removal hypothesis
 - Average truck load same as summer

 - Shipments needs about ≈ 20% less than normal period

Increase ESALS of 19% (18 % inside cities)

If We Remove Spring Load Restrictions (SLR)

=> 19% more ESALS per day (18% inside cities)

(2) Pavement Damage

Damages During Spring Thaw

1a-Literature (example from AASHTO)

$$Dp = \Delta PSI_{thaw}$$

$$\Delta PSI_{total}$$

$$Dp_1 \approx 1.45 / 2 = 0.725$$

$$Dp_2 \approx 1.3 / 2.2 = 0.55$$

From all the cases found in literature, spring thaw damages varies from 0.3 to 0.85

Damages During Spring Thaw

1b-Performance monitoring (H10, Fleurimont)

Annotations

- A lot of pavement damaging occurs during winter thawing events
 - Climatic variability between different years
- Ability to raise SLR during each thawing events, including those in winter, would be the ideal of beauty
- Winter Weight Premiums does not appear as a very good feature

Falling Weight Deflectometer FWD

Structural Damaging (1/N)

Unbound Materials Moduli

Rang Saint-Alexis, Saint-Maurice

AC modulus

Structural Indicators

- $\mathbf{\epsilon}_{t}$: AC elongation (fatigue cracking)
 - Six models from MTQ laboratory
 - Models from Norway, Alaska, Shell, Asphalt Institute
 - Empirical criteria based on SCI_{20°C}
- \bullet ϵ_{v} : rutting by permanent settlements
- PSI: AASHTO-1993 model
 - SN₁ corrected at 20°C

Theoretical Simulation of Structural Damages Ratione

Freezing
Sensor and
Climatic
Data

Periodic FWD Testing Layered Elastic Theory

Fatigue Law

Traffic Data

Damage

Time interval	Climatic and other	Properties of the	Pavement	N	n	D	RDF
THE HILL VAL	conditions	• · · · · · · · · · · · · · · · · · · ·	deterioration	I N	''		1 101
		layers of pavement					
			indicator				
Week 1	Temperature,	Types of materials,	Strain, structural				ر
Week 2	freezing, thawing,	thickness, resilient	number, surface	or)		:/	пеаг
Week 3	(water surface,	modulus, fatigue	curvature index	f (indicator)	AL F	Z. Z.	Di / Dmean
	precipitation, melting	strength		ğ	ES	s L ni /) i
	snow and ice, state of			i.	= un	<u>ا</u> ا] =
Weeki	stress)			+ =	in In	Miner's Di = ni	证
				z Z	_	2	3D
Week 52				_			

Mean: D_{mean}
Life expectancy: 1/D_{mean}

Theoretical simulations (damaging)

Spring damages ≈ f (summer deflection)

 Allow to use deflection inventory in order to extend conclusions for the whole pavement network

(Adjusted values to account for actual traffic conditions)

1410 km with DIM between 4 à 5 $\Rightarrow Dp = 0.38$

Weighted average = 0,63

If We Remove Spring Load Restrictions (SLR)

```
      % life reduction
      = Dp
      x ∆ ESALS

      Highways
      0.08
      ( 0.37 x 0.19 )

      National roads
      0.12
      ( 0.63 x 0.19 )

      Régional roads
      0.14
      ( 0.71 x 0.19 )

      Collector roads
      0.15
      ( 0.78 x 0.19 )

      Municipal roads
      0.14
      ( 0.74 x 0.18 )
```

A typical kilometer of *National Road* cost 10 000\$ per year to maintain. The reduced life expectancy of 12% means a minimum annual overcost of 1200 \$ per km

Dp = Damages during SLR period

Damages not related to heavy vehigles

Actual maintenance cost of the pavement network

Class of	Cost (k\$ / km / year)			
road	LCCA	PMS		
Highways	14,5 à 18,1	14,5		
National	9,2 à 11,9	9,7		
Regional	6,8 à 9,2	4,4		
Collector	5,6 à 7,6	5,8		
Municipal	9,5 à 12,8	5.8		

Cost	Network	
(M\$/y)	(km)	
51.8	3 571	
85.8	8 843	
20.0	4 535	
36.9	6 382	
190.0	32 859	

384.4

Municipal: 5,8 based upon values on collector roads

PMS (Pavement Management System)

Design adjustments

If We Remove Spring Load Restrictions (SLR)

MTQ:

24.4

Highways: 4.2

National: 11.5

Regional: 2.9

Collector: 5.8

MUNICIPAL: 26.9

TOTAL:

51.3 millions of \$

Sensitivity and reliability within standard deviation of data

% of weight restricted

Duration restricted

Annotations

- Actual SLR are believed to provides at least about 50 millions of \$ per year to the public road administrations (+50 > -40)
- When comparing with the industry counterpart, the Status quo appear as the optimum homogeneous solution

Heterogeneous approaches Examples

- Norway:
 - SLR: 0 / 12,5 / 25 / 50 % (removed in 1995)
 - Road network divided in three class of permitted loads all year long: 6 / 8 / 10 metric tons
- West of North-America (Canada USA)
 - One slide per month from November 30th, 1998 to July 1st, 1999.

Heterogeneous approaches

- Some problems remains
 - Enforcement
 - Complicated to adequately practice
 - Actual enforcement scales mostly on highways
 - Increased risk of contravening
 - Needs extensive, network level, monitoring of pavement bearing capacity (deflections)
 - Needs harmonisation of a set of predetermined itineraries
 - Each trucks need to use local roads « before going in » and « after going out » of highways
 - Carefull study needed in order to avoid showing favouritism or being prejudicial to individual interests
 - Increasing restrictions on local roads leads to reduced efficiencies due to unavoidable exceptions (busses, vehicles of public utilities ...)

Restrictions hétérogènes

- Problèmes subsistants:
 - Gestion et contrôle des charges
 - Plus complexe à appliquer
 - les stations de pesage sont surtout sur les autoroutes
 - Risques accru de contrevenants
 - Nécéssité d'une auscultation soutenue de la portance sur tout le réseau
 - Nécessité d'harmoniser les principaux itinéraires
 - Les camions doivent utiliser une route secondaire pour entrer et sortir des autoroutes
 - Étude minutieuse requise pour éviter des injustices entre les différents intérêts individuels des entreprises
 - Des restrictions accrues sur les routes locales veraient leur efficacité réduite à cause des exceptions inévitables (autobus, véhicules d'utilités publiques, ...)

CONCLUSION

- Homogeneous restrictions are recommended ...
 - until the developpement of acceptables solutions against the shortcommings of the heterogeneous approach
 - Enforcement more realistic in practice
 - Ensure the same justice for all
 - Status quo appears the optimum homogeneous solution
 - Maintain status quo until further notice
 - Consult all the partners (municipalities and counties, road enforcement services, shippers and industry, other entity concerned).

