

Transport Canada's Innovation Centre – On-Road RD&D 6x2 Drivetrains Testing & Evaluation

Task Force on Vehicle Weights and Dimensions Meeting November 27, 2019

OVERVIEW

- TC Innovation Centre
- Background/Context
- Approach
- Track Testing
- Dynamic Simulation
- Infrastructure Impacts Analysis

 \geq

Transport Canada's Innovation Centre

In January 2018, Transport Canada launched the Innovation Centre (IC) ...

... a transportation innovation Research, Development & Deployment (RD&D) organization tasked with:

- driving an integrated departmental approach to transportation innovation;
- partnering in new ways with government, industry and academia; and
- leveraging emerging technologies for the benefit of all Canadians.

... with a vision: "To enable bold and innovative transportation solutions that enhance the safety, security, accessibility, and environmental performance of transportation in Canada."

On-Road RD&D (ecoTECHNOLOGY for Vehicles Program)

- tests, evaluates and provides expert technical information on advanced light-duty vehicle (LDV) and heavy-duty vehicle (HDV) technologies.
- testing and evaluation results:
 - guide the proactive development of codes, standards, and regulations;
 - support the development of non-regulatory industry codes and standards that anchor industry efforts to integrate new vehicle technologies.
- testing priorities are focused on addressing knowledge gaps, particularly where new innovations have potential environmental or safety implications.
- A few eTV projects related to assessing technologies for improving efficiency include:
 - Cooperative truck platooning systems
 - Vehicle-to-Vehicle Communication Testing (DSRC)
 - 6x2 Axles

HDV 6x2 Axle Technology – Background Information

- Traditional highway tractors employ a 6x4 drive configuration which uses a nonpowered steer axle and two powered rear axles.
- Recent innovations have resulted in increased availability of 6x2 configurations in North America -- which employ only one powered rear axle in one of two configurations:
 - Tag forward most drive axle is powered (Kenworth, Freightliner); and,
 - Pusher rear most drive axle is powered (Volvo).
- OEMS can have different load shifting (biasing) strategies, for example:
 - During low speed operation load is transferred to the drive axle to gain traction
 - During high speed operation load is transferred to the dead (LRR) axle for fuel economy
- Increase in individual axle loads could have implications for:
 - Infrastructure (i.e. loading that is higher than the current allowable axle limits); and,
 - Vehicle traction and dynamic stability (i.e. high speed maneuvering after load shifting has occurred).

Potential Benefits	Potential Challenges
 fuel economy reduced emissions reduced maintenance mass reduction 	 loading on infrastructure vehicle dynamics and traction tire wear

HDV 6x2 Axle Technology – Project Approach

The eTV Program technical assessment has three planned phases.

Phase 1 – Technical Literature Review – Completed August 2016

Review available OEM technical documents, peer-reviewed publications, consult OEMs and suppliers, and
other available material to characterize different 6x2 architectures and performance.

Phase 2A – Test Plan Development – Completed September 2016

• Development of track testing procedure to measure how much load is transferred to the drive axles in various loading configurations.

Phase 2B – Winter Track Testing (Two vehicle pairs) – Completed February 2017

 Equip the vehicles with wheel force transducers to measure the loads and moments at each wheel Complete track testing at TC's Motor Vehicle Test Center (MVTC) to measure axle loads and moments during accelerations from a dead stop on a low μ (ice) surface.

Phase 2C – Winter Track Testing (all vehicle pairs) – Completed February 2018

• Similar to Phase 2B, but including a third vehicle pair, transitions to higher speeds, and lighter loads.

Phase 2D – Dynamic Simulation – Completed September 2019

• Use empirical data from testing to simulate dynamic performance in various scenarios.

Phase 3A – Infrastructure Analysis – Completed June 2019

 Centre for Pavement and Transportation Technology (University of Waterloo) conducted infrastructure impacts analysis.

Test Vehicles: 6x2/6x4 Vehicle Pairs

Kenworth T680 (provided by ECCC)	VNM62T 200 (provided by Volvo)	Freightliner Cascadia Evolution 125 (provided by TC)
PACCAR MX-13 HD, 12.9L	Volvo D11 425V/1550, 11L	Detroit DD15, 14.8L
455 np @1700 rpm,	425 hp @ 1600 rpm	400 np @ 1,625 rpm,
Coverned RPM: 2 200 rpm	Coverned PPM: 2 200 rpm	Coverned BPM: 2.200 rpm
Automated Eaton 10 and	L Shift ATO2612D	DT12 OA 1550 sutomatic
6x2: tag tandem	6x2: nusher tandem	6x2: tag tandem
$G \subseteq W = 80,000 \text{ lbs}$	G C W 80 000 lbs	GCW: 80 000 lbs (36 300 kg)
Fr Axle: 12,000 lbs	Volvo VF12 12 500 lbs	6x4: 40.000 lbs tandem
Rr Axle: 6x4 40,000 lbs,	Meritor RS23-160 23,000 lbs	6x2: 20,000 lbs single
6x2 34,000 lbs	40K; 20K Volvo Air Suspension, W	20,000 lbs tag
Trailer Load (lbs): 40,000	20K Liftable Aux Axle 50"	2.28 rear axle ratio
Emission controls: LRRA, IRTE, ATS, TGR	Meritor ABS with VEST	ABA, ACC and LDW technologies

 \geq

TRACK TESTING

- Testing at Motor Vehicle Test Centre, Blainville QC
- Open deck trailer with range of ballast amounts and distributions
- Acceleration from a standing start on an ice pad on DELTA, transitioning to clear pavement for a lap around BRAVO (~6.5km), reaching 80km/h
- The magnitude and duration of load shifting events were measured using wheel force transducers.

Target Axle Loads

100%	85%	70%	50%	0%
10,000 kg**	8,500 kg*	7,000 kg	5,000 kg	Empty Trailer

*MOU Limit, **Exceeds limits in most jurisdictions (and Kenworth design limit)

EXAMPLE RESULTS: 7,000KG STATIC TARGET

				During Slip	
Vehicle	Axle	Function	Static Load	TCS on	TCS off
KA	Middle	Driven	7 257	7 504	7400
NA (Rear	Driven	7 152	7231	7 192
KB	Middle	Driven	6 588	8880	8795
ND	Rear	Un-driven	6 593	5775	5805
\/A	Middle	Driven	6638	6821	6782
VA	Rear	Driven	6 573	6750	6747
	Middle	Un-driven	7 051	4528	4641
VD	Rear	Driven	6915	9118	9037
	Middle	Driven	7 195	7 327	7288
ГА	Rear	Driven	7 137	7 167	7 185
ED	Middle	Driven	7 138	8914	8906
ГD	Rear	Un-driven	6862	5651	5661

Canada NRC·CNRC

 \geq

SUMMARY – TRACK TESTING

- Using load biasing, the 6x2 vehicles were able to accelerate from a stop on a level ice patch with comparable performance to their 6x4 counterparts for all loading conditions.
- The drive axles had design limits. As the total weight on the tandem axle set was increased, the magnitude of weight shifted to the drive axle decreased.
- Load biasing strategies varied between vehicles.
 - "VB" had the most aggressive load biasing strategy, but limited drive axle weight to ~9,100 kg if possible (ideal for light loads).
 - "KB" employed load biasing for relatively short durations, equalizing axle loads shortly after gaining traction.
 - "FB" employed load biasing during the slip event, and equalized axle load when the vehicle reached a speed of 72 km/h.

PROVINCIAL INPUT

Feedback received from the provinces/territories has included:

- How do 6x2 axle technology perform in more challenging traction conditions (low friction, grade, with and without tire chains).
- How stable are 6x2 technology compared to 6x4 during an emergency lanechange maneuver
- What is the 6x2 vehicle response during a load biasing event while at speed, accelerating, and decelerating, cornering along a curved down slope.
- How do high traction and low traction tires affect 6x2 performance.

... challenging to test full range of scenarios on a test track.

DYNAMIC MODELING AND SIMULATION

- Simpack model developed for 6x4 and 6x2 tractor-semitrailers that simulates
 - load shifting between axles in tandem set for 6x2,
 - tag and pusher tandem axle configurations for 6x2,
 - various manoeuvers: curves, lane changes, hills, range of speed/acceleration, and
 - various vehicle/road conditions: payloads, tires, coefficients of friction.
- Limitations: Model did not include powertrain or engine traction control, ABS braking system not made to match an existing system

SUMMARY – DYNAMIC SIMULATION (1)

- During manoeuvers on level roads, including on curves, the 6x2 and 6x4 configurations performed similarly.
- During hill climbs up to 15% grade
 - On **packed snow or higher traction** surfaces the 6x2 and 6x4 configurations performed **similarly** at all payloads, and
 - on **low traction surfaces (ice or loose snow)** the 6x4 truck was able to climb steeper grades than the 6x2 truck (load biasing incl.).

	Climb at Co	unstant Spe	ea						
Coefficient	Maximum Grade (%)								
of Friction	1300 kg payload	10300 kg payload	20300 kg payload	26300 kg payload					
0.1	3.0	3.0	2.9	2.9					
0.2	6.2	6.2	6.1	6.1					
0.4	12.7	13.2	12.5	12.5					
0.6	>15	>15	>15	>15					
0.8	>15	>15	>15	>15					
1.0	>15	>15	>15	>15					
1.2	>15	>15	>15	>15					

6x4 Hill Climb at Constant Speed

6x2 (Tag) Hill Climb at Constant Speed

Coefficient	Maximum Grade (%)							
of Friction	1300 kg payload	10300 kg payload	20300 kg payload	26300 kg payload				
0.1	3.0	2.8	1.9	1.4				
0.2	6.2	5.8	3.8	3.4				
0.4	12.8	11.7	7.6	6.5				
0.6	>15	>15	11.9	10.1				
0.8	>15	>15	>15	13.5				
1.0	>15	>15	>15	>15				
1.2	>15	>15	>15	>15				

Coefficients of Friction

- 0.1 -> Ice or loose snow
- 0.3 -> Sanded ice/snow
- 0.4 -> Packed snow
- 0.5 -> Wet road
- 0.6 -> Dry dirt road
- 0.8+ -> Dry Asphalt

Max. Grade in Canada: 7-12%

SUMMARY – DYNAMIC SIMULATION (2)

- With **high traction tires**, the maximum ascendable grade increased by at least 25% for all configurations.
- On a **downhill curve** (12% grade and 333m radius)

-

- The 6x4 tractor semitrailer could maintain speed on a surface with a lower coefficient of friction (0.17) compared to the 6x2 with load shifted (0.22).
- Both of these coefficients of friction are representative of un-sanded ice or loose snow.
- With high traction tires, the 6x2 was able to descend a hill with a coefficient of friction as low as 0.18.

Canada

NCCNC

INFRASTRUCTURE IMPACTS ANALYSIS

- Online survey conducted to obtain pavement information for Provinces/Territories.
- Track test results used to calculate truck factors and ESAL.

 \geq

(PA

CENTRE FOR PAVEMENT AND

TRANSPORTATION TECHNOLOGY

INFRASTRUCTURE IMPACTS ANALYSIS

- When there is no load biasing event, infrastructure impacts are equivalent for 6x2 and 6x4 configurations.
- Load-biasing events may cause infrastructure impacts.
 - We don't have data on real-world frequency and locations of load-biasing events (e.g. on ice patches).
 - Data from the NRC Dynamic Axle Load Test was used for the analysis
 - The test consists of acceleration from a stand-still on ice and transitioning to dry pavement and higher speeds (80 km/h) for a 6.5 km loop.
 - Applied to data from the NRC Dynamic Axle Load Test, the analysis represents a scenario where vehicles repeatedly lose traction in the same location.
 - This is a particularly challenging scenario for infrastructure impacts.

INFRASTRUCTURE IMPACTS – TRUCK FACTOR

 \geq

111-1 010-

INFRASTRUCTURE IMPACTS – TRUCK FACTOR

 \geq

.....

19

INFRASTRUCTURE IMPACTS – TRUCK FACTOR

 \geq

1.22

20

INFRASTRUCTURE IMPACTS - EXAMPLE FLEXIBLE PAVEMENT PRELIMINARY RESULTS

*

 \geq

	i augue era	s annage i	atto (inist y car) at the averag	e track increa		
Deedlerel	M	0 t ¹		Da	mage ratio (1st yea	ur)	
Road level	Manufacturer		100% Load	85% Load	70% Load	50% Load	o% Load
	KW	6×2	NA	2.90	1.26	0.46	0.24
	KW	6×4	NA	2.16	1.09	0.48	0.23
Highway	FI	6×2	5.03	2.83	1.65	0.74	-
Inghway	ГL	6×4	4.94	2.37	1.50	0.55	0.26
$W = \begin{bmatrix} 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	6×2	4.29	2.53	2.03	1.05	0.32	
	vv	6×4	-	2.21	0.32	0.55	0.25
	KW	6×2	NΛ	3.70	1.60	0.59	0.30
	IX VV	6×4	INA	2.76	1.38	0.61	0.29
Major Arterial		-					
Major Arterial		6×4	6.30	3.02	1.91	0.71	0.33
	VV	6×2	5.47	3.22	2.59	1.34	0.40
	•••	6×4	NA 2.90 1.26 0.48 0.74 4.94 2.37 1.50 0.45 0.46 4.94 2.37 1.50 0.55 0.3 4.94 2.37 1.50 0.55 0.3 4.94 2.37 1.50 0.55 0.3 4.94 2.37 1.50 0.55 0.3 4.94 2.37 1.60 0.55 0.3 4.94 2.37 1.60 0.55 0.3 5.03 2.21 0.32 0.55 0.3 - 2.21 0.32 0.55 0.3 6.42 3.61 2.11 0.94 - 5.47 3.22 2.59 1.34 0.4 5.47 3.22 2.59 1.34 0.4 5.47 3.22 2.59 0.4 0.70 0.5 2.69 1.51 0.58 0.25 0.5 0.5 2.69 1.51 0.88	0.32			
	KW	6×2	NA	1.55	0.67	0.25	0.13
	K	6×4	1 1 1	1.15	0.58	0.25	0.12
Minor Arterial	FI	6×2	2.69	1.51	0.88	0.39	-
VV KW Minor Arterial FL	6×4	2.64	1.26	0.80	0.30	0.14	
	VV	6×2	2.29	1.35	1.08	0.56	0.17
	•••	6×4	-	1.18	0.17	0.29	0.13
	KW	6×2	NA	0.98	0.43	0.16	0.08
		6×4		0.73	0.37	0.16	0.08
Road level Highway Major Arterial Minor Arterial Collector	FI.	6×2	1.71	0.96	0.56	0.25	-
Concetor	11	6×4	1.67	0.80	0.51	0.19	0.09 17
	VV	6×2	1.45	0.86	0.69	0.36	0.11
	v v	6		0 ==	0.11	0.10	0.00

Fatigue cracking damage ratio (first year) at the average truck factor values

*6x2 average truck factors are representative of the NRC Dynamix Axle Load Test.

INFRASTRUCTURE IMPACTS - EXAMPLE FLEXIBLE PAVEMENT PRELIMINARY RESULTS

 \geq

Rutting damage ratio (first year) at the average truck factor values*

Deadleyal	Manufaatuuan	Configuration	Damage ratio (1st year)					
Koad level	Manufacturer	Configuration	100% Load	85% Load	70% Load	50% Load	0% Load	
	VM	6×2	NΔ	0.16	0.07	0.03	0.01	
	KVV	6×4	1471	0.12	0.06	0.03	0.01	
Highway	FI	6×2	0.27	0.15	0.09	0.04	-	
Inghway	1 L	6×4	0.27	0.13	0.08	0.03	0.01	
	WW	6×2	0.23	0.14	0.11	0.06	0.02	
	vv	6×4		0.12	0.02	0.03	0.01	
	KW	6×2	NΔ	0.39	0.17	0.06	0.03	
Major Arterial	N W	6×4		0.29	0.15	0.06	0.03	
	FL	6×2	0.67	0.38	0.22	0.10	-	
		6×4	0.66	0.32	0.20	0.07	0.03	
	VV	6×2	0.57	0.34	0.27	0.14	0.04	
		6×4	-	0.30	0.04	0.07	0.03	
	KW	6×2	NA	0.52	0.23	0.08	0.04	
		6×4	INA	0.39	0.20	0.09	0.04	
Minor Arterial	FL	6×2	0.91	0.51	0.30	0.13	-	
		6×4	0.89	0.43	0.27	0.10	0.05	
	WV	6×2	0.77	0.46	0.37	0.19	0.06	
	vv	6×4	-	0.40	0.06	0.10	0.05	
	KW	6×2		0.32	0.14	0.05	0.03	
	KVV	6×4	INA	0.23	0.12	0.05	0.02	
Collector	FI	6×2	0.55	0.31	0.18	0.08	-	
Concelor	гL	6×4	0.54	0.26	0.16	0.06	0.03	
	1/1/	6×2	0.47	0.27	0.22	0.11	0.03	
	v v	1 .				/		

*6x2 average truck factors are representative of the NRC Dynamix Axle Load Test.

INFRASTRUCTURE IMPACTS GRAVEL ROADS PRELIMINARY RESULTS

 \geq

Summary of Gravel Road minimum thickness using avg tf (Serviceability) *

			Minimum Thickness (Damage Ratio)				
Road level	Manufacturer	Configuration	100%	85%	70%	50%	0%
			Load	Load	Load	Load	Load
Gravel Road	L'INI	6×2	NIA	229 (0.93)	178 (0.69)	178 (0.25)	178 (0.13)
	N <i>VV</i>	6×4	INA	203 (0.90)	178 (0.60)	178 (0.26)	178 (0.12)
	FL VV	6×2	279 (0.94)	229 (0.91)	178 (0.91)	178 (0.41)	-
		6×4	279 (0.92)	203 (0.98)	178 (0.83)	178 (0.31)	178 (0.14)
		6×2	254 (0.97)	229 (0.81)	203 (0.85)	178 (0.58)	178 (0.18)
		6×4	-	203 (0.92)	178 (0.18)	178 (0.30)	178 (0.14)

Summary of Gravel Road minimum thickness using avg tf (Rutting)*

			Minimum Thickness (Damage Ratio)				
Road level	Manufacturer	Configuration	100%	85%	70%	50%	0%
			Load	Load	Load	Load	Load
	VIA	6×2		254 (0.90)	178 (0.92)	178 (0.34)	178 (0.17)
Gravel Road	KVV	6×4	NA	229 (0.87)	178 (0.80)	178 (0.35)	178 (0.17)
	FL	6×2	330 (0.93)	254 (0.88)	203 (0.99)	178 (0.54)	-
		6×4	330 (0.91)	229 (0.95)	203 (0.91)	178 (0.41)	178 (0.19)
	1717	6×2	305 (0.94)	254 (0.79)	229 (0.82)	178 (0.77)	178 (0.23)
	VV	6×4	-	229 (0.89)	178 (0.24)	178 (0.40)	178 (0.19)

*6x2 average truck factors are representative of the NRC Dynamix Axle Load Test.

SUMMARY – INFRASTRUCTURE IMPACTS

General

During a load biasing event (e.g. triggered by loss of traction), the 6x2 vehicles have higher truck factors than their 6x4 counterparts.

Flexible Pavement

- Using average truck factors from the NRC Dynamic Load Tests:
 - At 8,500 kg/axle target conditions, the rutting and fatigue cracking damage ratios were 14% to 34% greater for 6x2 compared to 6x4.
 - At lower loads, for most cases damage ratios were 5% to 33% higher for the 6x2 vehicles compared to the 6x4 vehicles.

Gravel Roads

- At 5,000 kg/axle and below, 6x2 and 6x4 had equivalent minimum thickness for both serviceability and rutting.
- At loads above 7,000 kg/axle, if load biasing is triggered, the 6x2 configuration requires a greater gravel road thickness to achieve rutting criteria.

*Results for 6x2 represent a particularly challenging scenario for infrastructure – frequent loss of traction

QUESTIONS?

Martha Christenson, M.A.Sc.

Head, Road R&D / Chef, R&D routier Transport Canada's Innovation Centre / Centre d'innovation de Transports Canada martha.christenson@tc.gc.ca

https://www.tc.gc.ca/en/initiatives/innovation-centre.html

 \geq

EXAMPLE RESULTS: 8,500KG STATIC TARGET

