

New Load Equivalency Equations Account for Steering Axle Tire Size

Allan Bradley (speaker) & Papa-Masseck Thiam

Vehicle Weights & Dimensions Task Force Meeting _ Dec. 1, 2020

B.C. 9-axle tridem-drive log B-train

27.5 m long, 2.6 m-wide axles, 2.9 m-wide bunks

71.9 tonnes GVW (permit max), 50 tonne payload

PROBLEM STATEMENT

- Proposed new B.C. configurations must have ≥5% reduction in pavement impacts.
- TAC ESAL formulae don't account for tire size and over-estimate impacts from heavily loaded steering axles.
- Tridem-drive configurations are erroneously assessed and even may be unfairly rejected.
- 9-axle B-trains steer axle load was reduced to 6.9 t.
- Industry concerned that this impacts steerability, compliance, and productivity – possibly without technical justification.

RTAC-86 PAVEMENT IMPACT STUDY

 Most important Canadian pavement design study.

- \$32M cost.
- 14 instrumented test pavements from across Canada, representing 5 main geologic/ geographic regions.
- Highway truck loadings.
- Load equivalency factors are basis of many Canadian highway policies.
- LEF relations for single-axle single tire "steering" axles & for single/tandem/tridem axles with dual tires

CRITIQUE OF RTAC-86

Only tire size : 11R22.5 Measured steer load: ≤ 5500 kg (5500 kg steer axle = 0.69 ESALs)Steer LEF = 2x single-axle/ dual-tire LEF= 0.002418 x Load ^{2.9093} single-axle/ dual-tire LEF single-axle/ single-tire LEF = 0.004836 x Load ^{2.9093}

BUILDING ON RTAC-86

Using LE modeling to extend RTAC-86 results to different tire sizes.

- 1. Contact areas for tire sizes and loads (100 psi)
- 2. Build LEM of 14 RTAC-86 pavements & apply static loads
- 3. Calculate strains at key locations in the pavements
- 4. Estimate passes to rutting and cracking failure (mode of fewest passes governs (P_{TL})) for each tire & load combo
- 5. ESAL = (P_{TL}) x 0.69 ESAL / P_{11R22.5} @ 5500 kg

Modeled: 8 North American steering tire sizes

Tire size	Maximum axle load capacity (kg) *	Comment					
295/60R22.5	5,430	Not popular for forestry					
11R22.5	5,400	Typical on eastern Canadian log trucks and on-highway trucks					
11R24.5	6,520	Typical on western Canadian log truck					
315/80R22.5	5,780	Not popular for forestry					
WIDEBASE TIRE SIZES							
385/65R22.5	7,480	Common on tridem-drive log trucks					
455/55R22.5	8,560	Not popular for forestry					
425/65R22.5	8,880	Common on tridem-drive log trucks					
445/65R22.5	9,640	Used on tridem-drive log hauling truck					

*Inflated to 690 kPa (100 psi) cold inflation

Modeled: 14 RTAC-86 Highway Test Pavements

	Province -	14 provincial structures for RTAC study (1986)							
Test site		AC			Base		Subgrade		
		Thickness		Thickness		Thickness			
		(mm)	Description	(mm)	Description	(mm)	Description	Description	
1	NB	225	HMA	76	Crushed rock	460 Crushed stone		Silty-Sand	
2	NS	160	HMA	275	Granular	200 Granular		Gravelly Clay	
3	Qc	135	HMA	200	Crushed limestone	625 Granitic sand		Granitic gravel	
4	Qc	130	HMA	375	Crushed limestone	450	Granitic sand	Granitic gravel	
5	Qc	56	HMA	150	Granitic Gneiss	450 Granitic sand		Clay	
6	Qc	56	HMA	200	Granitic Gneiss	550	Granitic sand	Clay	
7	ON	110	HMA	150	Granular A	350	Granular C	Silty-Sand	
8	ON	170	HMA	200	Granular A	250 Granular B		Sand	
9	ON	190	HMA	300	Granular A	90	Old road	Clay	
10	AB	136	HMA	170	2-20 Gravel	-	-	Clay	
11	AB	136	HMA	250	2-20 Gravel	-	-	Clay	
12	BC	75	HMA	200	Granular	610	Granular crushed rock	Silty-Sand	
13	BC	85	HMA	210	Granular	610	Silty gravel	Silty-Sand	
14	BC	100	HMA	454	Granular	50	Mixed clay and sand	Clay	

Steering axle ESALs by tire size and axle load

8 steering tire sizes 4 t < axle load < 11 t

TRENDS:

- 1) Higher load = Higher LEF
- 2) Larger tire footprint = Lower LEF
- 3) Higher load = Greater LEF spread
- 4) Higher load = Greater TAC error

Steering axle load equivalency equations

The **TAC LEF** equation for a single axle with single tires is:

 $ESAL = 0.004836 \times [axle load (t)]^{2.9093}$

The **AASHTO LEF** equation for any axle type or axle spacing is:

 $ESAL = [0.01169 \times (axle load (kN)) + 0.064]^{[4+8.9/(axle load (kN)]]}$

Steering axle load equivalency equations

Tire size	Single-axle/single-tire ESAL equation	R ²	RMSE (ESAL)
295/60R22.5	ESAL = 4.05-0.82(Load)+0.081(Load) ² -6.76/Load	1.0000	0.003
11R22.5	ESAL = 5.31-1.03(Load)+0.091(Load) ² -9.23/Load	0.9997	0.021
11R24.5	ESAL = 5.77-1.10(Load)+0.094(Load) ² -10.16/Load	0.9998	0.018
315/80R22.5	ESAL = 4.24-0.86(Load)+0.082(Load) ² -7.08/Load	0.9999	0.009
385/65R22.5	ESAL = 6.03-1.15(Load)+0.096(Load) ² -10.66/Load	0.9998	0.019
455/55R22.5	ESAL = 5.81-1.12(Load)+0.094(Load) ² -10.20/Load	0.9997	0.021
425/65R22.5	ESAL = 5.98-1.15(Load)+0.095(Load) ² -10.57/Load	0.9997	0.022
445/65R22.5	ESAL = 5.88-1.14(Load)+0.094(Load) ² -10.30/Load	0.9997	0.020

9-axle log B-train pavement impact re-evaluation (2020)

NEW single-axle/ singl	e-tire lo	ad equiva	lency						
								ESALs/tonne	Difference from
		Steer WBST	Drives	Lead	Rear	Total	Payload (t)	payload	baseline
9-axle tridem drive B-train	Load (t)	7.3	24	24	17	72.3	50.47	0.143	-6.4%
	ESALs	1.29	1.95	1.95	2.04	7.23			
		385/65R22.5							
								ESALs/tonne	
		Steer	Drives	Lead	Rear	Total	Payload (t)	payload	
8-axle tandem drive B-train	Load (t)	5.5	17	24	17	63.5	43.89	0.153	
	ESALs	0.69	2.04	1.95	2.04	6.72			
		11R22.5							

Implications of research

BC MOTI has new steering axle LEF equations with which to more accurately evaluate truck pavement impacts.

These 8 tire-specific load equivalency equations are now available for use by other regulators.

Some jurisdictions use provincially-specific ESAL equations. This methodology could be used to build tire size-specific equations based on these provincial formulae.

At full axle weights, BC industry has a competitive advantage created by a new, highly efficient, safe, and environmentally friendly truck configuration.

References

Bradley, A; Thiam P.-T. 2020. *A methodology to estimate widebase steering tire load equivalency. Technical Report 12(2020).* FPInnovations. Vancouver. BC. March 2020.

Bradley, A; Thiam P.-T. 2020. *New load equivalency equations account for steering axle tire size*. In proceedings of TAC 2020 Conference. Vancouver. BC. September 2020.

Thiam P.-T.; Bradley, A. 2021. *Development of a methodology to estimate widebase steering tire load equivalency in Canada*. Accepted for presentation at TRB 2021 Conference. January 2021.

QUESTIONS?

Allan Bradley, P.Eng., RPF

allan.bradley@fpinnovations.ca

(604) 831-3248

www.fpinnovations.ca