Final Report

Analysis of the Infrastructure Impacts of Heavy-duty Vehicle 6x2 Axle Technologies on Canadian Provincial and Territorial Roadways for Transport Canada (TC)

March 2020

Prepared by

Frank Mi-Way Ni, MAScGuangyuan Zhao, PhD.Susan Tighe, PhD., PEng.

Prepared for:

Acknowledgment

The research team gratefully acknowledge Transport Canada's ecoTECHNOLOGY for Vehicles Program for funding and supporting research, and the National Research Council Canada for providing the test data to the research team.

Table of Contents

Table of Contentsi
Lists of Figuresii
Lists of Tables iii
1.0 Introduction
1.1Project Scope and Objectives11.2Research Process11.3Research Methodology2
2.0 Data Collection
3.0 Methodology
 3.1 Failure Criteria for flexible pavement
4.0 Results and discussion
4.1 Survey result84.2 Truck Factor of the two configuration truck114.2.1 Empirical Cumulative Distribution of Truck Factor134.3 Result of Damage Ratio for Flexible pavement164.3.1 Fatigue Cracking Summary234.3.2 Rutting Summary234.3.3 Worst-Case Scenario in Flexible pavement264.4 Gravel Road284.4.1 Gravel Road minimum thickness summary294.4.2 Worst-Case Scenario in Gravel road31
5.0 Conclusions
References
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

Lists of Figures

Figure 1 Research Methodology Diagram	2
Figure 2 Truck factor of V Manufacturer's vehicle	11
Figure 3 Truck factor of K Manufacturer's vehicle	12
Figure 4 Truck factor of F Manufacturer's vehicle	12
Figure 5 Empirical Cumulative Distribution of the Freightliner truck factor	13
Figure 6 Empirical Cumulative Distribution of the Kenworth truck factor	14
Figure 7 Empirical Cumulative Distribution of the Volvo truck factor	15
Figure 8 Damage Ratio at higher load percentages on highway	27
Figure 9 Damage Ratio at higher load percentages on gravel road	31

Lists of Tables

Table 1 Progress-to-date on Project Proposed Tasks 1
Table 2 Tested Tractor Axle Loads (Target) 3
Table 3 Layer thickness of different road level
Table 4 Material Properties at different seasons 4
Table 5 Example Chart for computing Total Pavement Damage (Trial base Thickness = 25.4 cm)
Table 6 Example of ESAL calculation for gravel road design 7
Table 7 Survey results of each jurisdiction - 1 9
Table 8 Survey results of each jurisdiction - 2 10
Table 9 Average, Maximum, and minimum truck factor of Freightliner vehicle
Table 10 Average, Maximum, and minimum truck factor of Kenworth vehicle14
Table 11 Average, Maximum, and minimum truck factor of Volvo vehicle
Table 12 The allowable number of load repetition to failure based on seasons
Table 13 ESAL for different truck configurations at various load percentages on Highway 18
Table 14 ESAL for different truck configurations at various load percentages on Major Arterial road 19
Table 15 ESAL for different truck configurations at various load percentages on Minor Arterial road 20
Table 16 ESAL for different truck configurations at various load percentages on Collector 21
Table 17 Overview of the ESAL differences between 6x2 and 6x4 on highway 22
Table 18 Differences of damage ratio for fatigue cracking and rutting between 6x2 and 6x4 vehicles with average truck factor 24
Table 19 Fatigue cracking damage ratio (first year) at the average truck factor values 25
Table 20 Rutting damage ratio (first year) at the average truck factor values 26
Table 21 ESAL for the Kenworth vehicle for different truck types at 85% load condition 28
Table 22 ESAL for the Freightliner vehicle for different truck types at 50% load condition 28
Table 23 ESAL for the Volvo vehicle for different truck types at 85% load condition
Table 24 Summary of Gravel Road minimum thickness using avg tf (Serviceability)
Table 25 Summary of Gravel Road minimum thickness using avg tf (Rutting)

1.0 Introduction

Use of a 6x2-axle configuration on highway tractors, as opposed to the more traditional 6x4-axle configuration, may lead to fuel savings and reductions in GHG emissions (NACFE, 2014). The 6x2-axle design employs a single drive axle instead of the two drive axles employed by a conventional 6x4 system, thus eliminating the internal mechanical losses and mass associated with components such as the inter-axle drive shaft and differential.

With only one drive axle, however, tractors may suffer from reduced traction in certain conditions. To mitigate this problem, manufacturers offer systems capable of transferring load between the drive axle and the non-drive axle. This shift in loading may result in load levels beyond the current allowable limits in some provinces and territories.

Truck and traffic loading, environmental conditions, soil, and maintenance are key variables that affect pavement performance. With variable load systems that can transgress the allowable limits for loading, the potential for road surface damage opens up. Seasonal shifts can also amplify higher levels of road surface damage during the spring thaw. The North American Council for Freight Efficiency (NACFE) (2014) & The National Research Council Canada (2016) have examined loading configuration, fuel consumption, and traction in previous studies.

1.1 Project Scope and Objectives

The primary objective of this work is to analyze and report on the potential impact of 6x2 loadshifting technologies on Canadian road infrastructure. Test data will be acquired from National Research Council research team (Chuang, 2018) to perform damage analysis. Results should show the relationship between pavement degradation and 6x2 technology under a range of scenarios.

1.2 Research Process

All of the tasks that were identified in the project kick-off meeting have been completed.

Task	Status
Task 1: Project Kick-off Meeting	Complete
Task 2: Data Collection	Complete
Task 3: Methodology	Complete
Task 4: Survey	Complete
Task 5: Conduct Damage Analysis	Complete
Task 6: Perform preliminary analysis	Complete
Task 7: Draft Final Report	Complete
Task 8: Presentation	Complete

 Table 1 Progress-to-Date on Project Proposed Tasks

1.3 Research Methodology

Figure 1 presents the methodology that was followed in this project.

Figure 1 Research Methodology

2.0 Data Collection

In Winter 2018, the National Research Council (NRC) conducted a vehicle driving test on 6x2 and 6x4 vehicles. Wheel force transducers were installed on the tandem axle in the tractor to obtain dynamic axle data during the test. Five different tractor axle loads were tested which are shown in Table 2. The test data were presented in Appendix C. The test vehicles included three manufacturers, which are Kenworth, Freightliner, and Volvo. The testing consisted of acceleration from stop on an ice patch, transitioning to dry pavement and continuing up to 80 km/h on a 6.5 km track, then returning to a stop on the ice patch (Chuang, 2018). It should be noted that the Kenworth 6x2 capped the drive axle load at 7,400 kg in static condition, and the target of 10,000kg/axle on the drive axle set could not be reached.

It is important to note that according to the Heavy Truck Weight and Dimension Limits for Interprovincial Operations in Canada prepared by the Task Force on Vehicle Weights and Dimensions Policy in 2014, the weight limit for tandem axle sets on tractor semitrailers on the designated highway system is 17,000 kg, or "85% load condition" in this report. Jurisdictions retain authority to allow more liberal weights for trucking operations within their jurisdiction. For example, an 18,000 kg weight limit, or "90% load condition", would be representative of weight limits in Eastern Canada.

100%	85%	70%	50%	0%
10,000 kg	8,500 kg	7,000 kg	5,000 kg	Empty trailer

 Table 2 Tested Tractor Axle Loads (Target)

3.0 Methodology

3.1 Failure Criteria for flexible pavement

In flexible pavement structures, fatigue cracking and permanent deformation, namely rutting are the two primary failure criteria for pavement performance. In order to have an understanding of how many loadings the pavement structure can bear before these two failures occur, the allowable number of load repetition before fatigue cracking and rutting were calculated via the use of Weslea software. The input parameters required in Weslea are pavement structure, layer properties, tire pressure, and loads. According to the typical Ontario pavement design report from Applied Research Associates (2015), the typical thickness of the four classes are listed in Table 3. The typical flexible pavement thickness in Ontario is usually a three-layer structure, which consists of a hot-mix asphalt surface layer over a granular A base layer, and a thick granular B subbase layer on top of the subgrade soil. The Elastic Modulus and the Poisson Ratio of the three layers at different seasons are also assumed based on engineering experience and demonstrated in Table 4. The tire pressure is assumed to be 862 kPa (125 psi), while the axle loads are assumed to be an 80 KN (18-kips) single axle load.

Lavar	Thickness (cm)							
Layer	Highway	Major Arterial	Minor Arterial	Collector				
Surface	21	18	14	12				
Base	20	15	15	15				
Subbase	60	50	30	30				
Subgrade	-	-	-	-				

 Table 3 Layer thickness of different road level

 Table 4 Material Properties at different seasons

Saaan	I	Poisson's			
Season	Surface Layer	Base	Subbase	Subgrade	Ratio
Winter	13,500	250	200	150	0.35
Spring Thaw	2,800	100	100	30	0.35
Summer	1,378	150	130	80	0.35
Fall	2,800	150	130	80	0.45

In order to evaluate the exact pavement impact of the vehicles, equivalent single axle load (ESAL) is introduced to assess the level of impact from the traffic loadings. To calculate ESAL, it is necessary to understand the load equivalency factor (truck factor) of the vehicles. The truck factor can be calculated using the following equation:

Approximate load equivalency factor
$$\cong \left(\frac{axle\ load}{18,000lb\ (80kN)\ one\ axle\ load}\right)^4$$
 (1)

Traffic loading is the most important factor in pavement design. The thickness of the pavement is calculated by the number of repetitions of a standard vehicle or axle load, which is an 80KN (18-kip) single axle load. Any axle load that is not 80KN (18-kip) or consists of tandem or tridem axle must be converted into an 80KN (18-kip) single axle load. After the axle loads are transformed into 18-kip single axle load, the summation of all loads during the design period is known as equivalent single axle load (ESAL) (Huang, 1993). The equation for calculating ESAL is:

$$ESAL = (ADT)_{0}(T)(T_{f})(G)(D)(L)(365)(Y)$$
(2)

where:

ESAL	=Equivalent Single Axle Load
(ADT) ₀	=Average daily traffic at the start of the design period
Т	=Percentage of trucks in ADT
T_{f}	=Number of 18-kip(80-kN) single axle load applications per truck
G	=Traffic Growth factor, (%)
D	=Directional distribution factor, (%)
L	=Lane distribution factor, (%)
Y	=Design period in years

To calculate the ESALs of 6x2 and 6x4 truck, several assumptions are made in this section. Firstly, four road levels had been classified and used in this research. The four road levels are Highway, Major Arterial, Minor Arterial, and Collector as classified in the TAC guide (2013). Secondly, the average daily truck traffic is taken from the Ontario pavement design report from Applied Research Associates (2015). Thirdly, the directional distribution factor is set to be 0.5 for both directions, while the lane distribution factor is 0.7 for Highway, 0.9 for Arterial road and 1 for Collector and Gravel road. The design period is the number of years for the design.

Once the allowable number of load repetitions and ESAL were calculated, the damage ratio could be obtained by dividing the allowable number of load repetitions by the ESAL. If the damage ratio is over or equal to one, the failure will occur.

3.2 Damage analysis methodology for Gravel Roads

In the American Association of State Highway and Transportation Officials (AASHTO) Guide for Design of Pavement Structures (AASHTO 1993), Equivalent Single Axle Load (ESAL) is considered vital to gravel road thickness design. The design method is based on the trial-and-error approach. It assumed the thickness and calculated the expected damage due to serviceability and rutting criteria. In this analysis, the serviceability and rutting criteria generated by the two vehicles will be presented. The detailed procedures are listed below:

1. Select trial base thickness.

Six trial thickness are assumed in this analysis, which are 17.78, 20.32, 22.86, 25.4, 27.94, 30.48, 33.02, and 35.56 cm (7, 8, 9, 10, 11, 12, 13, and 14 inch).

- 2. Select an allowable serviceability loss (Δ PSI), and allowable rutting depth (RD) The allowable serviceability loss (Δ PSI) is assumed to be 2.0 for low volume road, and the allowable rutting depth (RD) is set to 5 cm (2 inches).
- 3. Select seasonal resilient modulus for roadbed (M_R) and elastic modulus of the aggregate base

material (E_{BS})

The seasonal resilient modulus for roadbed (M_R) and elastic modulus of the aggregate base material (E_{BS}) is assumed and listed in Table 5.

- Determine projected 80KN (18-kip) ESAL traffic
 Seasonal 80KN (18-kip) ESAL traffic is calculated and demonstrated in Table 6.
- Determine allowable 80KN (18-kip) ESAL traffic for serviceability criteria The allowable 80KN (18-kip) ESAL traffic for serviceability criteria can be determined by using the serviceability-based nomograph. The results are shown in Table 5 as an example.
- Determine allowable 80KN (18-kip) ESAL traffic for rutting criteria
 The allowable 80KN (18-kip) ESAL traffic for rutting criteria can be estimated by using the rutting-based nomograph. The results are presented in Table 5 as an example.
- Determine seasonal damage (serviceability and rutting criteria)
 The seasonal damage can be calculated by dividing the projected 80KN (18-kip) ESAL traffic by allowable traffic in that season.

After the pavement damage is determined, compute a chart with thickness and pavement damage. The layer thickness will be determined by interpolating in this graph for total damage equal to 1.0.

Table 5 Example Chart for computing Total Pavement Damage (Trial base Thickness = 25.	4
cm)	

Season	Roadbed Resilient Modulus MR (psi)	Base Elastic Modulus MR (psi)	Projected 80KN (18- kip) ESAL Traffic, W18	Allowable 80KN (18- kip) ESAL Traffic PSI	Seasonal Damage, W18/(W18) PSI	Allowable 80KN (18- kip) ESAL Traffic, (W18)	Seasonal Damage W18/ (W18) RUT
Winter	20,000	25,000	7,767	500,000	0.016	65,000	0.119
Spring/thaw	2,000	25,000	4,660	7,250	0.643	6,000	0.777
Spring Fall	6,000	25,000	12,427.95	25,000	0.497	20,000	0.621
Summer	10,000	25,000	12,427.95	65,000	0.191	37,000	0.336
		Total	37,284		1.347		1.854

Industry	Configuration	AADTT	Day	Growth (0%)	DSF	LD	TF	years	ESAL
FL	6x2 100% max tf	50	365	1	0.5	0.7	5.816	1	37,150
	6x4 100% max tf	50	365	1	0.5	0.7	5.529	1	35,316
	6x2 100% avg tf	50	365	1	0.5	0.7	4.935	1	31,522
	6x4 100% avg tf	50	365	1	0.5	0.7	4.842	1	30,928
	6x2 100% min tf	50	365	1	0.5	0.7	4.390	1	28,041
	6x4 100% min tf	50	365	1	0.5	0.7	4.271	1	27,281

Table 6 Example of ESAL calculation for gravel road design

3.3 Survey

An online survey was also used in this study to obtain information regarding the pavement structure and system within the jurisdictions in Canada. In order to choose respondents for this online survey, the expert sampling method was used. The list and email addresses of professionals working with either the city, region or ministry in a capacity that involved pavement related issues and were part of the Transportation Association of Canada was obtained. The survey was administered via email to each of the professionals that met the above criteria.

The questions asked in the survey required the respondents to indicate their province and positions; this was to enable further the assessment of their ability to provide answers to the subsequent questions and to determine which province each response was for. Furthermore, details about the type of road network, pavement structure and the main type of pavements and distresses encountered in their specific jurisdictions was requested. The expectation regarding the distresses that might occur due to the use of the 6×2 vehicle within each province was also sought. The questions were multiple choice, selecting options that applied and some open-ended questions. A sample of the survey is provided in Appendix D.

4.0 Results and discussion

4.1 Survey result

The results obtained from the online survey administered to various professionals across provinces in Canada are presented in this section. Eighteen surveys were sent out with a response rate of 56%. Responses were obtained from most provinces and territories except British Columbia, the Northwest Territory, Nova Scotia, Prince Edward Island and Nunavut. A summary of the results is presented in Table 7 and 8. Respondents worked with either the city, the region, the ministry in infrastructure, construction and specifically pavement related areas and were well suited to respond to the questions asked as a selective sampling method was employed to determine respondents.

Generally, most regions have a higher percentage of flexible pavement compared to other pavement types; hence, it is expected that the 6×2 trucks will mostly use flexible pavements. In New Brunswick and Yukon, chip seal pavements are predominant, and this should also be noted when designing for 6×2 vehicles in these jurisdictions and other colder regions. The main challenges currently faced on most roads in the jurisdictions include fatigue cracking, transverse and longitudinal cracking, permanent deformation/rutting, depressions and ravelling. Reasons for these distresses range from wear and tear due to high traffic loading, especially in the winter, pavement structure already approaching the end of life, extremely low temperature, material quality and insufficient layer thickness.

It is anticipated that the distresses that could occur due to the introduction of the 6 x 2 vehicles would include fatigue cracking, permanent deformation/rutting, longitudinal cracking and depressions. It should be noted that respondents from Alberta indicated that if the $6x^2$ vehicle has a lift axle, Alberta Transportation will not allow it.

It was also observed that pavement thicknesses for most regions, according to the ranges provided for flexible pavement were quite similar. The expected road level that 6 x 2 vehicle is expected to travel varies from province to province with some provinces indicating use on only Urban roadways while others signify both Rural and Urban.

Jurisdiction	Main pavement type	Road level for 6 x 2	Pavement structure	Proportion of pavement types	Distresses that occur an major pavements	Most significant distress and why	Expected distresses caused by 6 x 2
Newfoundland and Labrador	Flexible	Rural Highway, Rural Arterial road, Rural Collector	50mm to 110mm of Asphaltic Materials 250mm to 450mm of Granulars		Fatigue cracking, Permanent deformation / Rutting, Depression, Longitudinal cracking, Rutting caused by pavement wear. No seasonal/spring load restrictions.	Pavement wear during the winter caused by studded tires on high speed, high traffic environments. Rural Collections tend to face more structural issues.	Fatigue cracking, Depression, Longitudinal cracking
Quebec	Flexible, Rigid , Composite (rigid with an asphalt overlay)	Urban Highway, Rural Highway, Urban Arterial road, Urban Collector	Highways > 200 mm thickness, Arterial road: concrete 200mm, asphalt overlay: 75mm Urban collector: asphalt- 300mm In both cases,with a gravel foundation of 300 mm	Highways: 83.3% Flexible, 16.7% Rigid Urban: 60% Flexible, 40% Composite	Fatigue cracking, Permanent deformation / Rutting, Longitudinal cracking, Transversal cracking, potholes	Fatigue, longitudinal and transversal cracking, rutting in the wheel paths Most road network built in the 60s therefore reached end of useful life.	Fatigue cracking, Permanent deformation / Rutting, potholes
Manitoba	Flexible, Rigid, Gravel road, Chip seal		Rigid - 250mm concrete, 150- 300mm base flexible - 100- 200mm bituminous, 300-800mm base chip seal - double chip seal over 75-300mm base gravel - 75- 150mm base		Fatigue cracking, Permanent deformation / Rutting, Raveling, Longitudinal cracking	Thermal cracking due to extremely low temperatures	Permanent deformation / Rutting, , Corrugation and Shoving
Alberta	Flexible	Urban Highway, Urban Expressway, Urban Arterial road, Urban Collector	There is no truly "typical" section. However, approximately 250 mm Asphalt layer over 300 Granular Base/Subbase would be considered normal.	90% flexible, 10% others	Fatigue cracking, Permanent deformation / Rutting, Raveling, Longitudinal cracking, Transverse cracking / Low temperature cracking and segregation	Low temperature cracking which always require signiicant maintenance. Generally pavement structural design life is 20 years, therefore requires rehabilitation for strength. Granular layers are not overly thick and no frost protection.	Fatigue cracking, Permanent deformation / Rutting, , Longitudinal cracking

Table 7 Survey results of each jurisdiction - 1

Jurisdiction	Main pavement type	Road level for 6 x 2	Pavement structure	Proportion of pavement types	Distresses that occur an major pavements	Most significant distress and why	Expected distresses caused by 6 x 2
Saskatchewan	Flexible	Urban Highway, Rural Highway	100 to 200mm asphalt surface layer		Fatigue cracking, Permanent deformation / Rutting, Thermal Cracking	Cracking	Permanent deformation / Rutting, Corrugation and Shoving, Fatigue cracking over a long period of time
New Brunswick	Flexible , Rigid , Gravel road, Chip seal	Urban Highway, Urban Expressway, Urban Arterial road, Urban Collector, Urban Local road, Rural Highway, Rural Arterial road, Rural Collector, Rural Local	Typical AC layer (base+seal) is 140mm, but there is wide variability throughout the system	34% Flexible, 0.04% Rigid, 28% Gravel , 38% Chip Seal	Fatigue cracking, Permanent deformation / Rutting, Raveling, Bleeding, Corrugation and Shoving, Depression, Longitudinal cracking	Fatigue cracking and rutting are most common	Fatigue cracking, Permanent deformation / Rutting, Corrugation and Shoving, Depression, Longitudinal cracking
Yukon	Flexible pavement, Gravel road, Chip seal	Urban Highway, Urban Expressway, Urban Arterial road, Urban Collector, Urban Local road, Rural Highway, Rural Arterial road, Rural Collector, Rural Local, Mine Roads	150 - 250mm Base Coarse, 300 - 600mmSubbase 50 - 80mm asphalt where it exists	Mostly Chip seal and Gravel Roads, very few kms of the asphalt Roads	Fatigue cracking, Permanent deformation / Rutting, Raveling, Depression, Longitudinal cracking	Longitudinal and fatigue cracking in the asphalt pavement, Depression and rutting in the chip seal, Depression in the permafrost affected areas	Fatigue cracking, Permanent deformation / Rutting, Raveling, Depression, Longitudinal cracking
Ontario	Flexible	Urban Highway, Urban Expressway, Urban Arterial road, Urban Collector, Rural Highway, Rural Arterial road, Rural Collector	100 - 150 mm HMA 150 - 200 mm Granular Base 400 - 600 mm Granular Subbase		Fatigue cracking, Longitudinal cracking, Transverse Cracking	Transverse Cracking/Low Temperature Cracking, multiple reasons including asphalt binder quality.	Fatigue cracking

Table 8 Survey results of each jurisdiction - 2

4.2 Truck Factor of the two configuration truck

The truck factors of each vehicle with different loading condition are presented in this section. Three different types of manufacturer's vehicles were involved in this test, which is V, K and F. 6x4 and 6x2 axle vehicle is classified as Model A, and B, respectively. The test data that was used to convert into truck factor was obtained from the Dynamic Axle Load test which performed by NRC in 2018 (Chuang, 2018). Figure 2 to 4 shows the truck factor of the three manufacturers' vehicle at different loading condition.

Figure 2 presents the truck factor of the V Manufacturer's vehicle. It is clear that 6x2 configuration has higher truck factor than the 6x4 configuration at 70%, 50%, and 0% load condition. The truck factor of the two configurations has a similar average value at 85% load condition. However, the 6x2 truck has more and higher values of an outlier (black dots) compared to the 6x4 truck. This is due to the load transfer system installed on the 6x2 vehicle. At slippery or low-speed conditions, the shifted load would significantly increase the axle load on one of the axles and truck factor value. At 100% load condition, the 6x4 configuration truck has a wider interquartile range compared to 6x2. This could be due to the failure of the sensor on the left wheel of the 6x4 truck which is mentioned in the NRC report (Chuang, 2018), which resulted in lower average and minimum truck factors.

Figure 2 Truck factor of V Manufacturer's vehicle

Figure 3 demonstrates the truck factor of K Manufacturer's vehicle. It is clear that the average truck factor of 6x2 configuration is similar to 6x4 configuration, but the outlier of the 6x2 truck is significantly higher than 6x4 truck. The difference becomes even more significant at 85% load condition.

Figure 3 Truck factor of K Manufacturer's vehicle

Figure 4 demonstrates the truck factor of F Manufacturer's vehicle. At load condition below 85%, it has the same trend as K manufacturer vehicle with similar average truck factor but higher outliers. However, the 6x2 and 6x4 vehicle perform in the same way at 85% load condition. Though 6x2 truck still has higher outlier values.

Figure 4 Truck factor of F Manufacturer's vehicle

4.2.1 Empirical Cumulative Distribution of Truck Factor

Empirical cumulative distribution of all the truck factors has been presented in Figure 5 to 7. The truck factor distribution for the three manufacturer's 6x4 and 6x2 truck varies based on their truckload shifting mechanism. Table 9 listed the truck factor of Freightliner vehicle.

Figure 5 Empirical Cumulative Distribution of the Freightliner truck factor

The truck factors of Freightliner's 6x4 and 6x2 trucks show similar distribution at 100% load condition, with 6x4 truck ranging from 4.5 to 5.0 and 6x2 truck from 4.5 to 5.3. However, the 6x2 truck has a broader distribution than 6x4 truck at lower loadings (0%, 50%, 70%, and 85%), this is because both magnitude and duration of load shift was higher at the lower loads compared to at 100% load, which could lead to significant truck factor differences compared to the 6x4 truck.

Vehicle	Model	Load(%)	TF.avg	TF.max	TF.min
F	А	0	0.254	0.271	0.246
F	А	50	0.543	0.625	0.470
F	А	70	1.472	1.712	1.270
F	А	85	2.320	2.873	2.053
F	А	100	4.842	5.529	4.271
F	В	0	0.262	0.317	0.245
F	В	50	0.724	1.740	0.417
F	В	70	1.620	2.770	1.253
F	В	85	2.776	3.249	2.129
F	В	100	4.935	5.816	4.390

Table 9 Average, Maximum, and minimum truck factor of Freightliner vehicle

Figure 6 Empirical Cumulative Distribution of the Kenworth truck factor

The truck factor distribution of 6x2 and 6x4 for Kenworth at 0%, 50%, and 70% load has a similar trend. However, at 85% load levels, it can be seen that 6x2 truck has a broader distribution and higher maximum truck factor than the 6x4 truck, which is also observed in Freightliner 6x2 truck at 85% load condition. Table 10 lists the truck factor of the Kenworth vehicle.

Vehicle	Model	Load(%)	TF.avg	TF.max	TF.min
K	А	0	0.221	0.234	0.212
K	А	50	0.466	0.612	0.396
K	А	70	1.065	1.306	0.813
K	А	85	2.12	3.012	1.618
K	В	0	0.232	0.43	0.208
K	В	50	0.45	1.503	0.334
K	В	70	1.231	2.729	0.882
K	В	85	2.847	5.088	2.105

Table 10 Average, Maximum, and minimum truck factor of Kenworth vehicle

Figure 7 Empirical Cumulative Distribution of the Volvo truck factor

The Cumulative Distribution of the Volvo truck factor for the two vehicles has a similar trend at 85% load. However, unlike the Freightliner and Kenworth vehicles, which have a similar average truck factor at lower load condition. The Volvo 6x2 truck at 0%, 50%, and 70% has a higher initial truck factor than the 6x4 vehicle. The trend of 6x4 at 100% load react differently than others could be due to the sensor failure on the left wheel. Table 11 listed the truck factor of Volvo vehicle.

Vehicle	Model	Load(%)	TF.avg	TF.max	TF.min
V	А	0	0.247	0.254	0.242
V	А	50	0.537	0.646	0.465
V	А	70	0.317	0.508	0.249
V	А	85	2.171	2.853	1.338
V	А	100	2.754	4.604	0.241
V	В	0	0.311	0.357	0.272
V	В	50	1.028	1.558	0.698
V	В	70	1.991	4.190	1.191
V	В	85	2.476	4.697	2.070
V	В	100	4.209	4.896	3.713

Table 11 Average, Maximum, and minimum truck factor of Volvo vehicle

4.3 Result of Damage Ratio for Flexible pavement

The results for the damage analysis already described in the methodology are presented in this section based on the different road classifications.

Based on the Weslea software, the allowable number of load repetition to failure based on seasons in terms of fatigue life and rutting have been determined and presented in Table 12. Results for all the road classes shows that the pavement structure is more prone to rutting in the spring season with the least allowable number of load repetitions at this time. This is logical as in the spring season there is likely a high presence of water in the pavement structure due to the thawing of frozen water and rainfall. Fatigue cracking is also observed to occur more quickly in the summer season as the number of load repetition for this distress is the lowest at this period. This could be as a result of higher temperatures leading to softer asphalt surface layers. However, the allowable load repetition shave been found to be the highest in the winter allowing over 300 times more load repetition concerning rutting and 180 times more for fatigue compared to the spring and summer seasons respectively on major arterial roadways. This ratio is even higher for the highways, and a similar trend is noted for the other road classes. This means that the pavement structure is its most reliable in the winter.

The ESAL calculation for the Kenworth, Freightliner and Volvo vehicles for different truck configurations at various load percentages on the various road class are presented in Table 13 to 16. The parameters used in obtaining the ESALs are already described in the methodology with actual values also provided in Appendix E.

Considering the Freightliner vehicle on the highway, the expected ESAL at 100% load is observed to be greater for the 6 x 2 vehicle by 5%, 2%, and 3% at maximum, average, and minimum truck factors. However, the differences rise to 13%, 20%, and 4% at 85% load condition. This pattern is also true for the major arterial, minor arterial and collector roadways. Table 17 provides an overview of the ESAL differences between 6x2 and 6x4 on highway.

Road level	Season	Deterioration type	Allowable Number of Load Repetition
	Window	Fatigue	171,969,266
	winter	Rutting	3,319,495,976
	Summer	Fatigue	907,370
Highway	Summer	Rutting	64,352,781
підпімаў	Spring	Fatigue	2,270,525
	spring	Rutting	10,267,629
	Fall	Fatigue	3,478,168
	r all	Rutting	110,603,838
	Winton	Fatigue	83,320,850
	winter	Rutting	898,582,320
Maior Arterial	Spring	Fatigue	1,104,634
	Spring	Rutting	2,696,734
Major Arteria	Summor	Fatigue	463,728
	Jummer	Rutting	16,689,348
	Fall	Fatigue	1,725,750
	ган	Rutting	29,054,458
	Winter	Fatigue	26,909,485
	vv miter	Rutting	104,895,503
	Spring	Fatigue	359,202
Minor Arterial	Spring	Rutting	299,132
	Summer	Fatigue	171,859
	Summer	Rutting	1,862,131
	Fall	Fatigue	601,917
	1 un	Rutting	3,275,099
	Winter	Fatigue	14,412,168
		Rutting	56,387,879
	Snring	Fatigue	203,852
Collector	Spring	Rutting	179,286
Concetor	Summer	Fatigue	101,825
	Summer	Rutting	1,283,049
	Fall	Fatigue	343,231
		Rutting	2,063,603

Table 12 The allowable number of load repetition to failure based on seasons

Dood Close	Manufaaturor	Configuration	Truck factor	Load Condition (%)						
Koau Class	Manufacturer	Comiguration	I FUCK lactor	100	85	70	50	0		
		6×2	Maximum	-	12,999,840	6,972,595	3,840,165	1,098,650		
		6×4	Waximum	-	7,695,660	3,336,830	1,563,660	597,870		
	Konworth	6×2	Avenage	-	7,274,085	3,145,205	1,149,750	592,760		
	Kenworth	6×4	Average	-	5,416,600	2,721,075	1,190,630	564,655		
		6×2	Minimum	-	5,378,275	2,253,510	853,370	531,440		
		6×4	IVIIIIIIIIIIIIIII	-	4,133,990	2,077,215	1,011,780	541,660		
		6×2	Movimum	14,859,880	8,301,195	7,077,350	4,445,700	810,347		
		6×4	Waxiiluiii	14,126,595	7,340,515	4,374,160	1,596,875	692,405		
Uichway	Ensightlings	6×2	Average	12,608,925	7,092,680	4,139,100	1,849,820	668,782		
підпічаў	Freightimer	6×4		12,371,310	5,927,600	3,760,960	1,387,365	648,970		
		6×2	Minimum	11,216,450	5,439,595	3,201,415	1,065,435	626,053		
		6×4	Iviiiiiiiuiii	10,912,405	5,245,415	3,244,850	1,200,850	628,530		
		6×2	Maximum	12,509,280	12,000,835	10,705,450	3,980,690	912,135		
		6×4	Waxiniuni	11,764,299	7,289,415	1,297,940	1,650,530	648,970		
	Value	6×2	Avenage	10,753,995	6,326,180	5,087,005	2,626,540	794,605		
	VOIVO	6×4	Average	7,035,386	5,546,905	809,935	1,372,035	631,085		
		6×2	Minimum	9,486,715	5,288,850	3,043,005	1,783,390	694,960		
		6×4		615,672	3,418,590	636,195	1,188,075	618,310		

 Table 13 ESAL for different truck configurations at various load percentages on Highway

Dood Close	Manufa atuman	Configuration	Truels footon	Load Condition (%)						
Koau Class	Manufacturer	Comiguration	I FUCK lactor	100	85	70	50	0		
		6×2	Maximum	-	8,357,040	4,482,383	2,468,678	706,275		
		6×4	Waxiiiuiii	-	4,947,210	2,145,105	1,005,210	384,345		
	Konwonth	6×2	Avenage	-	4,676,198	2,021,918	739,125	381,060		
	Kenworth	6×4	Average	-	3,482,100	1,749,263	765,405	362,993		
		6×2	Minimum	-	3,457,463	1,448,685	548,595	341,640		
		6×4	wiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	-	2,657,565	1,335,353	650,430	348,210		
		6×2	Movimum	9,552,780	5,336,483	4,549,725	2,857,950	520,937		
		6×4	Waximum	9,081,383	4,718,903	2,811,960	1,026,563	445,118		
Major	Ensightlings	6×2	Average	8,105,738	4,559,580	2,660,850	1,189,170	429,931		
Arterial	Freightliner	6×4		7,952,985	3,810,600	2,417,760	891,878	417,195		
		6×2	Minimum	7,210,575	3,496,883	2,058,053	684,923	402,463		
		6×4	wiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	7,015,118	3,372,053	2,085,975	771,975	404,055		
		6×2	Maximum	8,041,680	7,714,823	6,882,075	2,559,015	586,373		
		6×4	Waxiiiuiii	7,562,764	4,686,053	834,390	1,061,055	417,195		
	Volvo	6×2	Avenage	6,913,283	4,066,830	3,270,218	1,688,490	510,818		
	VOIVO	6×4	Average	4,522,748	3,565,868	520,673	882,023	405,698		
		6×2	Minimum	6,098,603	3,399,975	1,956,218	1,146,465	446,760		
		6×4		395,789	2,197,665	408,983	763,763	397,485		

Table 14 ESAL for different truck configurations at various load percentages on Major Arterial road

Dood Close	Manufacturan	Configuration	Truck footor	Load Condition (%)						
Koau Class	Manufacturer	Comiguration	11 uck lactor	100	85	70	50	0		
		6×2	Movimum	-	1,253,556	672,357	370,302	105,941		
		6×4	waxiiiuiii	-	742,082	321,766	150,782	57,652		
	Vannanth	6×2	A	-	701,430	303,288	110,869	57,159		
	Kenworth	6×4	Average	-	522,315	262,389	114,811	54,449		
_		6×2	Minimum	-	518,619	217,303	82,289	51,246		
		6×4	Iviiiiiiiiiiiiiiiiii	-	398,635	200,303	97,565	52,232		
		6×2	Movimum	1,432,917	800,472	682,459	428,693	78,141		
		6×4		1,362,207	707,835	421,794	153,984	66,768		
Minor	Encichtlinen	6×2	Average	1,215,861	683,937	399,128	178,376	64,490		
Arterial	Freightliner	6×4		1,192,948	571,590	362,664	133,782	62,579		
		6×2	Minimum	1,081,586	524,532	308,708	102,738	60,369		
		6×4	wiinimum	1,052,268	505,808	312,896	115,796	60,608		
		6×2	Movimum	1,206,252	1,157,223	1,032,311	383,852	87,956		
		6×4	Waxiiiuiii	1,134,415	702,908	125,159	159,158	62,579		
	Value	6×2	A	1,036,992	610,025	490,533	253,274	76,623		
	VOIVO	6×4	Average	678,412	534,880	78,101	132,303	60,855		
		6×2	Minimum	914,790	509,996	293,433	171,970	67,014		
		6×4	wiiiiiiiiiiiiiiiii	59,368	329,650	61,347	114,564	59,623		

Table 15 ESAL for different truck configurations at various load percentages on Minor Arterial road

Dood Close	Manufaatumon	Configuration	Trunch footon		Load (Condition (%)		
Koau Class	Manufacturer	Comiguration	I FUCK lactor	100	85	70	50	0
		6×2	Movimum	-	464,280	249,021	137,149	39,238
		6×4	Waximum	-	274,845	119,173	55,845	21,353
	Konwonth	6×2	Avenage	-	259,789	112,329	41,063	21,170
	Kenworth	6×4	Average	-	193,450	97,181	42,523	20,166
		6×2	Minimum	-	192,081	80,483	30,478	18,980
		6×4	IVIIIIIIIIIIIIIII	-	147,643	74,186	36,135	19,345
		6×2	Movimum	530,710	296,471	252,763	158,775	28,941
		6×4		504,521	262,161	156,220	57,031	24,729
Collector	Enciabilinan	6×2	Average	450,319	253,310	147,825	66,065	23,885
Conector	rreigntiiner	6×4		441,833	211,700	134,320	49,549	23,178
		6×2	Minimum	400,588	194,271	114,336	38,051	22,359
		6×4	IVIIIIIIIIIIIIIII	389,729	187,336	115,888	42,888	22,448
		6×2	Maximum	446,760	428,601	382,338	142,168	32,576
		6×4	Waximum	420,154	260,336	46,355	58,948	23,178
	Valua	6×2	Avenage	384,071	225,935	181,679	93,805	28,379
	VOIVO	6×4	Average	251,264	198,104	28,926	49,001	22,539
		6×2	Minimum	338,811	188,888	108,679	63,693	24,820
		6×4		21,988	122,093	22,721	42,431	22,083

Table 16 ESAL for different truck configurations at various load percentages on Collector

Dood Close	Manufaatuuan	Configuration	Trunch fo atom		Los	ad Conditio	n (%)	
Koad Class	Manufacturer	Comiguration	I FUCK lactor	100	Load Condition (%)1008570500- 69% 109% 146% 84% - 34% 16% -3% 5% - 30% 8% -16% -2% 5% 13% 62% 178% 17% 2% 20% 10% 33% 3% 3% 4% -1% -11% 0% 6% 65% 725% 141% 41% 53% 14% 528% 91% 26%			
		6×2	Maximum		600/	1000/	1460/	Q / 0/
		6×4		-	0970	10970	140 %	04 70
	T 7 (1	6×2			240/	1(0/	20/	50/
	Kenworth	6×4	Average	-	34 70	10%	-3%	5%
-		6×2	Minimu		200/	00/	-16%	20/
		6×4	Minimum	-	30 70	0 70		-2%
	Freightliner	6×2	Marimun	5%	120/	(20/	1780/	170/
		6×4			13%	02%	1/8%	1/%
History		6×2	A	20/	200/	100/	330/2	20/
підпікаў		6×4	Average	270	20%	10%	33%	3%
		6×2	Minimum	20/	40/	10/	-11%	0.0/
		6×4	IVIIIIIIIIIIIII	570	4 70	-1 70		0 70
		6×2	Maximum	60/	650/	7250/	1/10/	<i>/</i> 10/
		6×4	wiaximum	0 70	05 70	12370	141 70	41 70
	Value	6×2	Avanaga	520/	140/	5280/	010/	260/
	Volvo	6×4	Average	33%0	14%	528%	9170	20%
		6×2	Minimum	14410/	550/	378%	500/	120/
		6×4		144170	33 70		30%	1270

Table 17 Overview of the ESAL differences between 6x2 and 6x4 on highway

4.3.1 Fatigue Cracking Summary

The damage ratio induced by these vehicles based on the calculated ESALs for maximum, average and minimum truck factor values at different load percentage over ten years has been analyzed in this study and details provided in Appendix B. A summary for fatigue cracking damage induced in the first year by the different vehicles at the average truck factor values is presented in Table 19. All the values are ratios with a ratio above one signifying that the damage caused has exceeded its allowable load capacity. By year one, highway and major arterial roads experienced fatigue cracking with damage ratios above one except some instance at 50% and 0% load levels. Minor arterial road and collector experienced fatigue cracking at 85% load and above in year one.

Table 18 demonstrates the percentage differences for fatigue cracking and rutting between 6x2 and 6x4 vehicles. It is clear that 6x2 vehicles exhibited higher damage ratio than 6x4 vehicles in all load condition with average truck factor except for the KW 50% load condition. In Canada the weight limit for tandem axle set on tractor semitrailers on the designated highway system is 17,000kg, represented by the "85% load condition" in this study. At 85% load condition with average truck factor, 6x2 vehicles exerted 14% to 34% greater damage ratios than 6x4 vehicles. At 100% load, the difference becomes 2% for FL vehicles.

4.3.2 Rutting Summary

A summary of rutting damage induced in the first year by the different vehicles at the average truck factor values is presented in Table 20. Like the fatigue damage, all values are ratios with a ratio above one signifying that the damage induced has exceeded the required limit. Generally, for all road classes and load levels, the damage ratio induced by the vehicle brands and types remained below one. This means that these vehicles did not cause rutting failures at year one. However, from year two, rutting damage starts to occur for the 100% load levels and after five years for the other load levels. The damage ratio is lowest for the highway compared to other road classes. Table 18 shows the percentage differences for rutting between $6x^2$ and $6x^4$ vehicles, with $6x^2$ vehicles exhibiting higher damage in most cases. It is noted that the magnitude of the difference in damage caused by 6×2 compared to the 6×4 vehicle is high for the Volvo truck especially at 70% and 50% load for all road classes.

Doodloval	Manufaat	Configura	Damage ratio (1 st year)						
Road level	Manufact	Configura	100%	85%	70%	50%	0%		
	urei	uon	Load	Load	Load	Load	Load		
	WW	6×2		240/	160/	20/	50/		
	K VV	6×4	-	3470	1070	-370	J 70		
Highway	FI	6×2	2%	20%	10%	33%	3%		
Ingnway	I'L	6×4	270		1070	5570	370		
	VV	6×2	53%	1/10/	528%	01%	26%		
	• •	6×4	3370	1470	52870	9170	2070		
	KW	6×2		3/1%	160/	_30⁄2	5%		
	K W	6×4	-	3470	1070	-370	570		
Major	FL	6×2	2%	20%	10%	33%	_		
Arterial		6×4	270	2070	1070	5570	_		
	VV	6×2	_	14%	528%	91%	26%		
		6×4		11/0	52070	7170	2070		
	KW	6×2	_	34%	16%	-3%	5%		
		6×4		5170	1070	-3%	570		
Minor	FL.	6×2	2%	20%	10%	33%	3%		
Arterial		6×4	270	2070	1070	5570	570		
	VV	6×2	53%	14%	528%	91%	26%		
	• •	6×4	5570	1470	52070	7170	2070		
	KW	6×2	_	34%	16%	-3%	5%		
		6×4		5170	1070	570	570		
Collector	FL	6×2	2%	20%	10%	33%	3%		
Concetor		6×4	270	2070	1070	5570	570		
	VV	6×2	53%	14%	528%	91%	26%		
	••	6×4	5570	14/0	52070	J1 /0	2070		

Table 18 Differences of damage ratio for fatigue cracking and rutting between 6x2 and 6x4vehicles with average truck factor

	Manufaat	Configura	Damage ratio (1st year)						
Road level	wanufact	tion	100%	85%	70%	50%	0%		
	urer	uon	Load	Load	Load	Load	Load		
		6×2	-	2.90	1.26	0.46	0.24		
	K VV	6×4	-	2.16	1.09	0.48	0.23		
Highway	TI	6×2	5.03	2.83	1.65	0.74	0.27		
	FL	6×4	4.94	2.37	1.50	0.55	0.26		
	X7X7	6×2	4.29	2.53	2.03	1.05	0.32		
	v v	6×4	2.81	2.21	0.32	0.55	0.25		
	12 XX	6×2	-	3.70	1.60	0.59	0.30		
	K VV	6×4	-	2.76	1.38	0.61	0.29		
Major	FL	6×2	6.42	3.61	2.11	0.94	0.34		
Arterial		6×4	6.30	3.02	1.91	0.71	0.33		
	VV	6×2	5.47	3.22	2.59	1.34	0.40		
		6×4	3.58	2.82	0.41	0.70	0.32		
	KW	6×2	-	1.55	0.67	0.25	0.13		
		6×4	-	1.15	0.58	0.25	0.12		
Minor	T	6×2	2.69	1.51	0.88	0.39	0.14		
Arterial	FL	6×4	2.64	1.26	0.80	0.30	0.14		
	VX	6×2	2.29	1.35	1.08	0.56	0.17		
	v v	6×4	1.50	1.18	0.17	0.29	0.13		
	WW	6×2	-	0.98	0.43	0.16	0.08		
	K VV	6×4	-	0.73	0.37	0.16	0.08		
Collector	FI	6×2	1.71	0.96	0.56	0.25	0.09		
Conector	ГL	6×4	1.67	0.80	0.51	0.19	0.09		
	VV	6×2	1.45	0.86	0.69	0.36	0.11		
	V V	6×4	0.95	0.75	0.11	0.19	0.09		

Table 19 Fatigue cracking damage ratio (first year) at the average truck factor values

	Manufaat	Carfiana	Damage ratio (1st year)							
Road level	Manufact	Configura	100%	85%	70%	50%	0%			
	urer	uon	Load	Load	Load	Load	Load			
	IZ XX	6×2	-	0.16	0.07	0.03	0.01			
	K VV	6×4	-	0.12	0.06	0.03	0.01			
Highway		6×2	0.27	0.15	0.09	0.04	0.01			
	FL	6×4	0.27	0.13	0.08	0.03	0.01			
	N/N/	6×2	0.23	0.14	0.11	0.06	0.02			
	v v	6×4	0.15	0.12	0.02	0.03	0.01			
Major Arterial	12 XX	6×2	-	0.39	0.17	0.06	0.03			
	KW	6×4	-	0.29	0.15	0.06	0.03			
	FL	6×2	0.67	0.38	0.22	0.10	0.04			
		6×4	0.66	0.32	0.20	0.07	0.03			
	VV	6×2	0.57	0.34	0.27	0.14	0.04			
		6×4	0.38	0.30	0.04	0.07	0.03			
	12 XX	6×2	-	0.52	0.23	0.08	0.04			
	K VV	6×4	-	0.39	0.20	0.09	0.04			
Minor	FL	6×2	0.91	0.51	0.30	0.13	0.05			
Arterial		6×4	0.89	0.43	0.27	0.10	0.05			
	VV	6×2	0.77	0.46	0.37	0.19	0.06			
	• •	6×4	0.51	0.40	0.06	0.10	0.05			
	IZ W	6×2	-	0.32	0.14	0.05	0.03			
	IN VV	6×4	-	0.23	0.12	0.05	0.02			
Collector	FI	6×2	0.55	0.31	0.18	0.08	0.03			
Collector	гL	6×4	0.54	0.26	0.16	0.06	0.03			
	VX	6×2	0.47	0.27	0.22	0.11	0.03			
	V V	6×4	0.30	0.24	0.04	0.06	0.03			

Table 20 Rutting damage ratio (first year) at the average truck factor values

4.3.3 Worst-Case Scenario in Flexible pavement

The above section summarizes the failure criteria analysis of the 6x2 and 6x4 trucks under the circumstances with an average truck factor. However, it should be noted that 6x2 configuration may have higher damage ratio when the slippery condition occurs. Figure 8 demonstrates one of the examples of this situation. The scenario is set to be on Highway Road Levels with 85% and 100% load for 6x2 and 6x4. It is clear that at the worst scenario when using max tf in the analysis, the 6x2 configuration has the highest damage ratio compared to others. The difference between the two configuration trucks could be smaller for some manufacturers. For instance, the difference in the damage ratios between 6x2 and 6x4 Freightliner trucks is reduced at 100% load condition.

However, Volvo's 6x2 trucks have significantly higher damage ratio at 85% load max tf compared to 6x4 trucks. Appendix B provides all the damage ratio figures for reference.

Figure 8 Damage Ratio at higher load percentages on highway

4.4 Gravel Road

Damage analysis for gravel road for all the vehicle brands and types at different load levels are presented in this section. The damage analysis is based on the serviceability and rutting criteria as earlier described with as serviceability loss (Δ PSI) of 2.0 and allowable rutting depth of 5cm (2inch).

Kenworth (KW)

The ESAL calculation for the Kenworth vehicle for different truck types and load percentages is presented in Table 21. The expected ESAL for maximum, average and minimum truck factor at 85% load is observed to be greater for the 6 x 2 than 6 x 4 vehicle by 69%, 34% and 30% respectively.

Industry	Configuration	AADTT	Day	growth(0%)	DSF	LD	TF	years	ESAL
KW	6x2 85% max tf	50	365	1	0.5	0.7	5.088	1	32,500
	6x4 85% max tf	50	365	1	0.5	0.7	3.012	1	19,239
	6x2 85% avg tf	50	365	1	0.5	0.7	2.847	1	18,185
	6x4 85% avg tf	50	365	1	0.5	0.7	2.12	1	13,542
	6x2 85% min tf	50	365	1	0.5	0.7	2.105	1	13,446
	6x4 85% min tf	50	365	1	0.5	0.7	1.618	1	10,335

Table 21 ESAL for the Kenworth vehicle for different truck types at 85% load condition

Freightliner (FL)

The ESAL calculation for the Freightliner vehicle for different truck types and load percentages is presented in Table 22. The expected ESAL of maximum, average and minimum truck factor at 100% load is observed to be greater for the 6 x 2 than 6 x 4 vehicle by 5%, 2% and 3% respectively.

Industry	Configuration	AADTT	Day	growth(0%)	DSF	LD	TF	years	ESAL
FL	6x2 100% max tf	50	365	1	0.5	0.7	5.816	1	37,150
	6x4 100% max tf	50	365	1	0.5	0.7	5.529	1	35,316
	6x2 100% avg tf	50	365	1	0.5	0.7	4.935	1	31,522
	6x4 100% avg tf	50	365	1	0.5	0.7	4.842	1	30,928
	6x2 100% min tf	50	365	1	0.5	0.7	4.39	1	28,041
	6x4 100% min tf	50	365	1	0.5	0.7	4.271	1	27,281

Volvo (VV)

The ESAL calculation for the Volvo vehicle for different truck types and load percentages is presented in Table 23. The expected ESAL of maximum, average and minimum truck factor at 85% load is observed to be greater for the 6 x 2 than 6 x 4 vehicle by 65%, 14% and 55% respectively.

Industry	Configuration	AADTT	Day	Growth (0%)	DSF	LD	TF	years	ESAL
VV	6x2 85% max tf	50	365	1	0.5	0.7	4.697	1	30,002
	6x4 85% max tf	50	365	1	0.5	0.7	2.853	1	18,224
	6x2 85% avg tf	50	365	1	0.5	0.7	2.476	1	15,815
	6x4 85% avg tf	50	365	1	0.5	0.7	2.171	1	13,867
	6x2 85% min tf	50	365	1	0.5	0.7	2.07	1	13,222
	6x4 85% min tf	50	365	1	0.5	0.7	1.338	1	8,546

Table 23 ESAL for the Volvo vehicle for different truck types at 85% load condition

4.4.1 Gravel Road minimum thickness summary

Table 24 and 25 demonstrates the summary of gravel road minimum thickness using avg tf. At 50% or lower load condition, the minimum thickness appears to be the same for both vehicles, indicating that the 6x2 vehicle has a similar impact as the 6x4 vehicle on the gravel road. However, at 70% load Volvo 6x2 vehicle will require thicker pavement to meet the rutting criteria, this is due the fact that Volvo 6x2 has a higher truck factor and damage ratio compared with the 6x4 vehicle. When considering 85% load condition, 6x2 vehicles from all manufacturers need at least 254 mm pavement thickness, while 6x4 vehicles require 229 mm thickness, this means, it would induce more damage than 6x4 vehicles. At 100% load, the thickness for both Freightliner vehicle are the same, which is 330 mm thick.

In the case of 85% load, for serviceability and rutting, the 6 x 2 vehicles at all truck factor levels required more pavement thickness As the load levels reduce to 70%, 50% and 0%, the intensity of the damage induced by 6 x 2 and 6 x 4 vehicles reduce and showed minimal difference. As a result, similar pavement thicknesses are required, except for the max tf of the 6 x 2 vehicle whose damage remained most times significantly higher than its comparable 6 x 4 vehicle.

			Minimum Thickness (Damage Ratio)							
Road level	Manufactu rer	on	100%	85%	70%	50%	0%			
			Load	Load	Load	Load	Load			
		(v)		229	178	178	178			
	KW	0~2	-	(0.93)	(0.69)	(0.25)	(0.13)			
	K VV	6×4		203	178	178	178			
			-	(0.90)	(0.60)	(0.26)	(0.12)			
	FL	6×2	279	229	178	178	178			
Gravel			(0.94)	(0.91)	(0.91)	(0.41)	(0.15)			
Road		6×4	279	203	178	178	178			
			(0.92)	(0.98)	(0.83)	(0.31)	(0.14)			
	X 7 X 7	6×2	254	229	203	178	178			
			(0.97)	(0.81)	(0.85)	(0.58)	(0.18)			
	v v	6.4	229	203	178	178	178			
		o×4	(0.90)	(0.92)	(0.18)	(0.30)	(0.14)			

Table 24 Summary of Gravel Road minimum thickness using avg tf (Serviceability)

Table 25 Summary of Gravel Road minimum thickness using avg tf (Rutting)

			Minimum Thickness (Damage Ratio)						
Road level	rer	on	100%	85%	70%	50%	0%		
			Load	Load	Load	Load	Load		
	KW	6×2	-	254 (0.90)	178 (0.92)	178 (0.34)	178 (0.17)		
Gravel Road		6×4	-	229 (0.87)	178 (0.80)	178 (0.35)	178 (0.17)		
	FL VV	6×2	330 (0.93)	254 (0.88)	203 (0.99)	178 (0.54)	178 (0.20)		
		6×4	330 (0.91)	229 (0.95)	203 (0.91)	178 (0.41)	178 (0.19)		
		6×2	305 (0.94)	254 (0.79)	229 (0.82)	178 (0.77)	178 (0.23)		
		6×4	254 (0.87)	229 (0.89)	178 (0.24)	178 (0.40)	178 (0.19)		

4.4.2 Worst-Case Scenario in Gravel Road

An example of the damage ratio for gravel road is presented in Figure 9. Similar to the damage ratio trend in the flexible pavement, Freightliner's 6x2 has comparable damage ratio with the 6x4 trucks at 100% load condition. However, Kenworth and Volvo 6x2 truck have higher damage ratio for max tf scenario at 85% load condition, which, results in thicker pavement design in this case. Appendix B provides all the damage ratio figures for reference.

Figure 9 Damage Ratio at higher load percentages on gravel road
5.0 Conclusions

In this study, the potential impact of the 6x2 configuration vehicles on road pavement for different road classes has been evaluated. This impact has been compared with the existing 6x4 vehicle effects. Track test data has been acquired from the National Research Council (NRC) to perform statistical and damage ratio analysis. In order to understand the typical road pavement infrastructure that 6x2 vehicles are expected to use in Canada, a Survey has been carried out to obtain information from professionals in most jurisdictions. The survey results depict that pavement thickness for most regions, for flexible pavement were quite similar. The expected road level that 6×2 vehicles are expected to travel varies from province to province with some provinces indicating use on only Urban roadways while others signify both Rural and Urban.

The statistical analysis for truck factor shows that the Kenworth and Freightliner 6x2 vehicles have similar average truck factors as their 6x4 vehicles at load levels equal or below 70%. At a higher load level, the Volvo 6x2 vehicle have a similar average truck factor as the Volvo 6x4 vehicle.

The results of damage ratio analysis of the 6x2 and 6x4 vehicles for flexible pavement at year one shows that most of the roads experienced fatigue cracking with damage ratios above one except some instance at 50% and 0% load levels. For rutting criteria of all the road class and load levels, the damage ratio induced by the vehicles remained below one. This means that these vehicles did not cause rutting failures at year one. Yet the trend of the level of damage still followed the same pattern in fatigue cracking. The truck factor played an important role in evaluating the level of damage for different road classes, from the percentage differences for fatigue cracking and rutting between 6x2 and 6x4 vehicles. The 6x2 vehicles demonstrate greater damage ratio than the 6x4 vehicles in all load conditions with average truck factor except for the KW 50% load condition.

For gravel roads, truck factor played a significant role in serviceability and rutting damage ratio analysis as it is the main parameter that is differing to calculate the ESAL. For example, the 6x2 vehicles require thicker pavement layer than 6x4 vehicles at 85% load using average truck factor. But at 70% and lower load condition, the required pavement thickness for 6x2 vehicles and the 6x4 vehicles are the same except in the case of Volvo.

Worst-case scenarios for both flexible pavement and gravel road have been examined. The worstcase scenario is set to assume the truck is running using max tf as it is running during load shifting event at all time. Results shows that the 6x2 configurations have higher damage ratios when slippery conditions occur. The difference between the two configuration trucks could be reduced for some manufacturers. It is clear that at the worst scenario when using max tf in the analysis, 6x2 configuration has the highest damage ratio compared to 6x4 configuration.

In Canada the weight limit for tandem axle sets on tractor semitrailers on the designated highway system is 17,000kg, represented by the "85% load condition" in this study. Using average truck factors from the NRC Dynamic Axle Load Test (Chuang, 2018), the analysis showed that at 85% load the damage ratios are 14% to 34% greater for the 6x2 vehicles compared to their 6x4 counterparts. At 70% or lower load conditions, for most cases the damage ratios are 5% to 33% higher for the 6x2 vehicles compared to the 6x4 counterparts.

It should be noted that when there is no load biasing event (e.g. no low traction trigger), infrastructure impacts should be equivalent for 6x2 and 6x4 configurations. A limitation of this study is that there was a lack of real world data on the frequency and locations of low traction triggers (e.g. ice patches), therefore the analysis is based on the "NRC dynamic axle load test" (Chuang, 2018) in which the vehicles start on an ice patch, thus triggering a load biasing event, and continue accelerating up to 80 km/h on dry pavement. When applied to data from this test, the analysis represents a scenario where vehicles repeatedly lose traction in the same location. This would represent a particularly challenging scenario for infrastructure.

References

North American Council for Freight Efficiency (2014). "Confidence Findings on the Potential of 6x2 Axles." Technical Report.

Task Force on Vehicle Weights and Dimensions Policy (2014). *Heavy Truck Weight and Dimension Limits for Interprovincial Operations in Canada*.

Chuang, D., (2018). "Class 8 Heavy-Duty 6x2 Drive Technology". National Research Council Canada – Automotive and Surface Transportation. AST-GV-TR-0063.

Applied Research Associates, Inc., (2015). *Methodology for the Development of Equivalent Pavement Structural Design Matrix for Municipal Roadways including Maintenance and Rehabilitation Schedules and Life Cycle Cost Analysis.* Final report. Ontario, Canada.

Tighe, S., (2013). *Pavement asset design and management guide*. Transportation Association of Canada. Canada.

American Association of State Highway and Transportation Officials, (1993). *Guide for Design of Pavement Structures*.

Appendix A

Truck factor of each vehicle under different loading condition

Test	Vehicle	Model	Load(%)	Cycle	TF.avg	TF.max	TF.min
Н	F	А	0	1	0.254	0.271	0.246
Н	F	А	50	1	0.543	0.625	0.47
Н	F	А	70	1	1.472	1.712	1.27
Н	F	А	85	1	2.32	2.873	2.053
Н	F	А	100	1	4.842	5.529	4.271
Н	F	В	50	1	0.724	1.74	0.417
Н	F	В	70	1	1.62	2.77	1.253
Н	F	В	85	1	2.776	3.249	2.129
Н	F	В	100	1	4.935	5.816	4.39
Н	K	А	0	1	0.221	0.234	0.212
Н	K	А	50	1	0.466	0.612	0.396
Н	K	А	70	1	1.065	1.306	0.813
Н	K	А	85	1	2.12	3.012	1.618
Н	K	А	100	1	4.68	5.385	4.247
Н	K	В	0	1	0.232	0.43	0.208
Н	K	В	50	1	0.45	1.503	0.334
Н	K	В	70	1	1.231	2.729	0.882
Н	K	В	85	1	2.847	5.088	2.105
Н	K	В	100	1	3.296	5.837	2.099
Н	V	А	0	1	0.247	0.254	0.242
Н	V	А	50	1	0.537	0.646	0.465
Н	V	А	70	1	0.317	0.508	0.249
Н	V	А	85	1	2.171	2.853	1.338
Н	V	В	0	1	0.311	0.357	0.272
Н	V	В	50	1	1.028	1.558	0.698
Н	V	В	70	1	1.991	4.19	1.191
Н	V	В	85	1	2.476	4.697	2.07
Н	V	В	100	1	4.209	4.896	3.713

Table Truck factor of each vehicle under different loading condition

Appendix B Result of Damage Ratio

Highway

Volvo (VV)

Major Arterial Road

Volvo (VV)

Minor Arterial Road

Collector

Volvo (VV)

Gravel Road

Appendix C Dynamic Axle Load Test Results

Freightliner

Freightliner 6X4 on Hot Lap at 50% Load

Freightliner 6X4 on Hot Lap at 70% Load

Freightliner 6X4 on Hot Lap at 85% Load

Freightliner 6X4 on Hot Lap at 100% Load

Freightliner 6X2 on Hot Lap at 50% Load

Freightliner 6X2 on Hot Lap at 70% Load

Freightliner 6X2 on Hot Lap at 85% Load

Freightliner 6X2 on Hot Lap at 100% Load

Kenworth

Kenworth 6X4 on Hot Lap at 0% Load
Kenworth 6X4 on Hot Lap at 50% Load

Kenworth 6X4 on Hot Lap at 70% Load

Kenworth 6X4 on Hot Lap at 85% Load

Kenworth 6X2 on Hot Lap at 0% Load

71

Kenworth 6X2 on Hot Lap at 50% Load

Kenworth 6X2 on Hot Lap at 70% Load

Kenworth 6X2 on Hot Lap at 85% Load

Volvo

Volvo 6X4 on Hot Lap at 0% Load

Volvo 6X4 on Hot Lap at 50% Load

Volvo 6X4 on Hot Lap at 70% Load

Volvo 6X4 on Hot Lap at 85% Load

Volvo 6X2 on Hot Lap at 0% Load

Volvo 6X2 on Hot Lap at 50% Load

Volvo 6X2 on Hot Lap at 70% Load

Volvo 6X2 on Hot Lap at 85% Load

Volvo 6X2 on Hot Lap at 100% Load

Appendix D Survey

Analysis of the Infrastructure Impacts of Heavy-duty Vehicle 6x2 Axle Technologies on Canadian Provincial and Territorial Roadways for Transport Canada (TC)

Use of a 6x2-axle configuration on highway tractors, as opposed to the more traditional 6x4axle configuration, may lead to fuel savings and reductions in GHG emissions. The 6x2-axle design employs a single drive axle instead of the two drive axles employed by a conventional 6x4 system, thus eliminating the internal mechanical losses and mass associated with components such as the inter-axle drive shaft and differential.

With only one drive axle, however, tractors may suffer from reduced traction in certain conditions. To mitigate this problem, manufacturers offer systems capable of transferring load between the drive axle and the non-drive axle. This shift in loading may result in load levels beyond the current allowable limits in some provinces and territories.

Truck and traffic loading, environmental conditions, soil, and maintenance are key variables that affect pavement performance. With variable load systems that can transgress the allowable limits for loading, the potential for road surface damage opens up. Higher levels of road surface damage can also be amplified by seasonal shifts during the spring thaw. The North American Council for Freight Efficiency (NACFE) (2014) & The National Research Council Canada (2016) have examined loading configuration, fuel consumption, and traction in previous studies.

The objective of this work is to analyze and report on the potential impact of 6x2 load-shifting technologies on Canadian road infrastructure. Results should show the relationship between pavement degradation and 6x2 technology under a range of scenarios. Hence, it is necessary to obtain information from each jurisdiction regarding their pavement system and expectation with respect to the use of 6x2 vehicles.

Q1. By agreeing to participate in the study you are not waiving your legal rights or releasing the investigator(s) or involved institution(s) from their legal and professional responsibilities.

I agree to participate
I do not agree to participate
Q2. What province are you representing?
Alberta
British Columbia
Manitoba
New Brunswick

□Newfoundland and Labrador

□Northwest Territories

□Nova Scotia

□Nunavut

□Ontario

□Prince Edward Island

□Quebec

□Saskatchewan

 \Box Yukon

Q3. What organization are you representing and your role in the organization?

Q4. Which types of the road level are you expecting the 6x2 vehicle to run in your jurisdiction? (Please check all boxes that apply)

□Urban Highway

□Urban Expressway

□Urban Arterial road

□Urban Collector

□Urban Local road

□Rural Highway

□Rural Arterial road

□Rural Collector

□Rural Local

□Other (please specify)

Q5. What is the main pavement type currently in use in your jurisdiction for the roads specified in question #4? (Please check all boxes that apply)

□Flexible pavement

□Rigid pavement

□Gravel road

□Chip seal

□Other (please specify)

Q6. Please provide the proportion of each if there is more than one pavement type for the roads specified in question #5.

Q7. What is the typical pavement layer thickness for the roads specified in question #4?

Q8. What are the typical distresses you encounter for the roads specified in question #4? (Please check all boxes that apply)

□ Fatigue cracking

□Permanent deformation / Rutting

□Raveling

□Bleeding

□Corrugation and Shoving

 \Box Depression

□Longitudinal cracking

□Other (please specify)

Q9. Could you comment on the most significant distress and why?

Q10. What kind of pavement failure are you expecting might happen as a results of 6x2 vehicles in your jurisdiction, for the roads specified in question #4? (Please check all boxes that apply)

□Fatigue cracking

□Permanent deformation / Rutting

□Raveling

□Bleeding

□Corrugation and Shoving

Depression

□Longitudinal cracking

□Other (please specify)

Appendix E Example of ESAL Calculation

Industry	Configuration	AADTT	Day	growth(0%)	DSF	LD	TF	years	ESAL
KW	6x2 100% max tf	20,000	365	1	0.5	0.7	5.837	1	14,913,535
	6x4 100% max tf	20,000	365	1	0.5	0.7	5.385	1	13,758,675
	6x2 100% avg tf	20,000	365	1	0.5	0.7	3.296	1	8,421,280
	6x4 100% avg tf	20,000	365	1	0.5	0.7	4.68	1	11,957,400
	6x2 100% min tf	20,000	365	1	0.5	0.7	2.099	1	5,362,945
	6x4 100% min tf	20,000	365	1	0.5	0.7	4.247	1	10,851,085

Kenworth - Highway at 100% load condition

Kenworth - Major Arterial at 100% load condition

Industry	Configuration	AADTT	Day	growth(0%)	DSF	LD	TF	years	ESAL
KW	6x2 100% max tf	10,000	365	1	0.5	0.9	5.837	1	9,587,273
	6x4 100% max tf	10,000	365	1	0.5	0.9	5.385	1	8,844,863
	6x2 100% avg tf	10,000	365	1	0.5	0.9	3.296	1	5,413,680
	6x4 100% avg tf	10,000	365	1	0.5	0.9	4.68	1	7,686,900
	6x2 100% min tf	10,000	365	1	0.5	0.9	2.099	1	3,447,608
	6x4 100% min tf	10,000	365	1	0.5	0.9	4.247	1	6,975,698

Kenworth - Collector at 100% load condition

Industry	Configuration	AADTT	Day	growth(0%)	DSF	LD	TF	years	ESAL
KW	6x2 100% max tf	500	365	1	0.5	1	5.837	1	532,626
	6x4 100% max tf	500	365	1	0.5	1	5.385	1	491,381
	6x2 100% avg tf	500	365	1	0.5	1	3.296	1	300,760
	6x4 100% avg tf	500	365	1	0.5	1	4.68	1	427,050
	6x2 100% min tf	500	365	1	0.5	1	2.099	1	191,534
	6x4 100% min tf	500	365	1	0.5	1	4.247	1	387,539